Observations of Electron Scale Turbulence

Joachim Saur (University of Cologne) with contributions from Olga Alexandrova (Observatoire de Paris)

Basic Spatial Electron Scales:

- Spatial scales:
 - Electron gyroradius: $\rho_e = v_{perp} / \Omega_e$
 - Electron inertial length scale $\lambda_e = c/\omega_{pe}$
 - Debye length $\lambda_D = (\epsilon_0 k_B T_e / n_e e^2)^{1/2}$
- Spatial scales (solar wind, foreshock, magnetosheath same order of magnitude):

$$- \rho_e = 1-2 \times 10^3 \, \text{m}$$

$$- \lambda_e = 1-2 \times 10^3 \text{ m}$$

 $- \lambda_{D} = 10 \text{ m}$

Basic Temporal Electron Scales:

- Temporal scales:
 - Gyrofrequency: $\Omega_{ce} = e B / m_e$
 - Electron plasma frequency: $\omega_{pe} = (n_e e^2/m_e \epsilon_0)^{1/2}$
- Typically values for $f=\omega/2\pi$ (solar wind, foreshock, magnetosheath: values same order of magnetide)

$$- f_{ce} = 2-4 \times 10^2 \text{ Hz}$$

$$- f_{pe} = 1-4 \times 10^4 \text{ Hz}$$

• Scales are Doppler shifted to frequencies in solar wind by: $\omega = \mathbf{k} \cdot \mathbf{v}_{flow}$ if $v_{phase} \ll v_{flow}$ $- f_{\rho e} = 0.5 - 1 \times 10^2$ Hz $- f_{\lambda e} = 0.5 - 1 \times 10^2$ Hz $- f_{\lambda D} = 5 \times 10^3$ Hz

Basic Temporal Electron Scales:

- Temporal scales:
 - Gyrofrequency: $\Omega_{ce} = e B / m_e$
 - Electron plasma frequency: $\omega_{pe} = (n_e e^2/m_e \epsilon_0)^{1/2}$
- Typically values for $f=\omega/2\pi$ (solar wind, foreshock, magnetosheath: values same order of magnitude)
 - $f_{ce} = 2-4 \times 10^2 \text{ Hz}$ Observationally accessible ?

$$- f_{pe} = 1-4 \times 10^4 \text{ Hz}$$

• Scales are Doppler shifted to frequencies in solar wind by: $\omega = \mathbf{k} \cdot \mathbf{v}_{flow}$ if $v_{phase} \ll v_{flow}$ $- f_{pe} = 0.5 - 1 \times 10^2$ Hz $- f_{\lambda e} = 0.5 - 1 \times 10^2$ Hz

$$-f_{\lambda D} = 5 \times 10^3 \text{ Hz}$$

What is electron scale turbulence? In this talk: $f \gtrsim 3$ Hz, i.e. > ion scales

1. Observations: Electron inertial range

 $3 \text{ Hz} < f < [f_{\rho e}, f_{\lambda e}] = ~50 \text{ Hz}$

Helios Measurements (Denskat et al. 1983)

- Magnetic field measurments within solar wind between 0.3 and 1.0 AU
- Helios 2 fluxgate and search coil magnetometer
- Slope of spectra ~1.7 approx constant within 4x10⁻³ Hz to 2 Hz.
- Spectral break around gap between 2 Hz and 4.7 Hz
- Displacement of power spectral density between 2 Hz and 4.7 Hz probably due to damping of Alfven waves near the proton and alphaparticle cyclotron frequencies
- For f > 4.7 Hz spectral indicies in the range of ~3 are observed.

Cluster: Solar wind observations around ion scales (Bale et al. 2005)

- k ρ_i <0.45: magnetic and electric spectrum with α=-1.7
- 0.45 < k ρ_i <2.5: electric field α = -1.26 and magnetic field α = -2.12
- $k \rho_i > 2.5$ electric spectrum exp(- $k \rho_i/12.5$)
- E/B-Ratio fits v0(1+ (k ρ_i)²), see red curve in b). This is consistent with kinetic Alfven waves for k ρ_i.

Cluster: Magnetosheath up to electron scales (Alexandrova et al. 2008)

- Spectral knee at ion scales ~0.3 Hz and curvature around 50 Hz; emission of parallel whistler waves at 100 Hz
- Between ion and electron scales $[0.2k \lambda_i, 50 k \lambda_i \approx 1.2k \lambda_e]$:

- B_{\perp} and $B_{||}$: α =-2.5

Cluster: Foreshock up to electron scales Sahraoui et al. 2009

B_{perp}: STAFF-SC burst (blue) B_{para:} STAFF-SC burst (green)

- Two breakpoints at 0.5 Hz and 35 Hz.
- Spectral behavior between ion and electron scales

 f^{-2.5}
- Breakpoints fit well with Doppler-shifted: proton and electron gyro-scales

Cluster: Foreshock (Sahraoui et al. 2009)

B_z : FGM and STAFF-SC (green) E_y : EFW (black)

- B scales as $k_{\perp}^{-2.51}$
- E scales as $k_{\perp}^{-0.38}$ (but close to noise level)
- Scaling is consistent with kinetic Alfven waves (KAW)
- Authors show additionally that second break point is consistent with damping of KAW:

 $\gamma/\omega_r \approx 1$ for k $\rho_e \approx 1$

Cluster: Solar wind (Alexandrova et al. 2009) $V \in [360, 670] km/s, \ \beta_i \in [0.4, 2], \ \beta_e \in [0.2, 1.6], \ \Theta_{BV} \in [65, 85]^\circ$

- Cluster Mag-Observations with FGM, STAFF-SC and STAFF-SA in f=[1x10⁻³, 3x10²] Hz
- Under different plasma conditions the spectrum:
 - k^{-2.8} power law between ion and electron scales

Artemis: Electron density fluctuations

(Chen et al. 2012)

- Slow solar wind
- α =-2.7 within within 3 < k ρ_i < 15
- α=-2.75 ± 0.06 from a statistical study of 16 intervals.

Cluster: Solar wind up to electron scales (Sahraoui et al. 2010)

- Below break point near [0.4,1] $k_{\perp}\rho_i$: steep scaling (transition region): $k_{\perp}^{-4.5}$
- Electron inertial range $k_{\perp}^{-2.8}$

Cluster: Solar wind k-filtering in ion transition region (Sahraoui et al. 2010)

- Transition region (up to 2 Hz, \sim k $_{\perp}$ ρ_i \sim 2)
- Cascade is carried by highly oblique kinetic Alfven waves.
- Observations follow KAW dispersion relationship within [0.04,2] $k_{\perp} \rho_i$ (see also Salem et al. 2012)
- The (k,omega) observations are also in agreement with convected (or slowly propagating) coherent structures with $k_{\perp} >> k_{||}$ and $\omega \approx 0$ (Roberts et al. 2013).

Ratio $\delta E/\delta B$ and $\delta B_{||}/\delta B$ (Salem et al. 2012)

Data are consistent with kinetic Alfven waves with nearly perpendicular wavevectors

Current sheets/discontinuities

Perri et al. 2012

$$\alpha(t, \tau) = \arccos\left(\frac{\mathbf{B}(t) \cdot \mathbf{B}(t+\tau)}{|\mathbf{B}(t)||\mathbf{B}(t+\tau)|}\right).$$

- Cluster observations of thin current sheets in plane perpendicular to B
- Observed on scales between proton and electron gyroradius
- Might be signs of intermittency and localized areas of turbulent dissipation

Anisotropy between ion and electron scales Chen et al. 2010

- Measurements between k ρ_i and k ρ_e
- $(B_{\perp} / B_{||})^2 \approx 0.05$
- Spectral index for B_⊥ at small Θ steepens consistent with critical balanced cascade (KAW or Whistler turbulence)
- Spectral index for B_{||}² is less consistent with predictions.

2. Observations: Electron dissipation range

 $[f_{\rho e}, f_{\lambda e}] = \sim 50 \text{ Hz} \leq f$

Electron Dissipation: Power law

- Sahraoui et al. 2009 (Foreshock)
- f^{-3.82} (electron scales)
- Breakpoint ~ at Doppler-shifted electron gyro-scales and electron inertial length.

- Sahraoui et al. 2010 (Solar wind)
- f^{-3.5} (electron scales)
- Breakpoint ~35 Hz, Doppler-shifted electron gyro-scales ~ 80 Hz.

Statistical study of turbulent spectra to a fraction of ρ_e Alexandrova et al., 2009, 2012

• $E(k_{\perp}) = E_0 k_{\perp}^{-8/3} \exp(-k_{\perp} \rho_e)$ describes well the totality of the observed spectra. E_0 is the only free parameter.

Dissipation scale and Universality?

Hydrodynamic turbulence: Universal Kolmogorov's function:

$$E(k)\ell_d/\eta^2 \sim (k\ell_d)^{-5/3}$$

In HD turbulence, this normalization collapses spectra measured under different conditions. Same scaling applied to solar wind spectra and for different candidates for the dissipation scale ld: $\ell_d = \rho_{i,e}, \lambda_{i,e}$

- Assumption: η=Const
- $k\rho_i \& k\lambda_i$ normalizations are not efficient for collapse
- $k\rho_e$ normalization bring the spectra close to each other.

[Alexandrova et al., 2009, PRL]

What controls the dissipation Scale? Alexandrova et al. 2012

Fitting with the 3 parameter model

 $E(k_{\perp}) = A k_{\perp}^{-a} exp(-k_{\perp}I_{d})$

 I_d is well correlated with ρ_e confirming the « Kolmogorov Universal function » normalization results, Alexandrova et al. 2009.

Summary

- "Electron inertial scale": Spectral slopes between ion and electron scales different authors
 - at f>3 Hz, all spectra are quite similar: α = 2.5 (foreshock), 2.8 (solar wind) (Sahraoui et al. 2009, 2010, Alexandrova et al. 2009, 2012)
 - Note, that 8/3~2.6 is the same as 2.8 when the exp factor is present (Alexandroval et al. 2012)
 - For E and k_{\perp} : $\alpha = 1.36$ (Bale et al. 2005, transition region)
 - Electron density fluctuations show 2.7 spectrum (Chen et al. 2012)
- Second spectral scale most likely correlated/controlled by electron gyroradius ρ_e (Sahraoui et al. 2009,2010, Alexandrova et al. 2009, 2012)
- *"*Electron dissipation scale" for $f > f_{\rho e}$: Spectrum steepenss, but no consensus is reached in the community
 - on the form of the spectral structure: Exponential (Alexandrova et al. 2009, 2012) or power law (Sahraoui et al. 2009, 2010)
 - whether it is universal or not.