Review of ion heating at coherent structures

Tulasi Nandan Parashar NASA Caltech Jet Propulsion Laboratory Pasadena

Aim

- Review the relevance of coherent structures in dissipative processes at the kinetic scales in solar wind
- Concentrate mainly on papers dedicated to the topic
- Attempt at being completely unbiased
- Try to pose questions to the audience

Plan

- Why?
- Dissipative processes
- Parameters
- Evidence supporting the role of coherent structures
- But what about other processes?
- Where to go from here?

Why?

Nature of fluctuations at kinetic scales: implications for solar wind dynamics

- Another (nonlinear) cascade?
- Dispersion?
- Dissipation?
- Eventually: Better large scale models via better modeling of kinetic physics

Dissipative processes

Requirements

- Collisionless
- Anisotropic
- Wave particle interactions
 - Cyclotron resonance
 - Landau damping
- Interaction with coherent structures e.g. current sheets and reconnection sites.
- Island contraction
- Shocks
- Stochastic heating

Dissipation at current sheets

Corona:

- Manoflares
- Simulations
- Observations

Inner Heliosphere - ?

- Observations?
- Theory mainly concerned with Wave-Particle Interactions

1AU

- Simulations
- Cluster, Wind, ACE observations

Evidence from simulations

- Hendrix 1996, Dmitruk 1999, Rappazzo 2006 Coronal context
- Dmitruk 2004
- Parashar 2011
- Greco 2012
- 🛞 Wan 2012, Karimabadi 2013
- Haynes 2013
- Tenbarge 2013

MHD – Test Particles

Hybrid PIC

Driven quasi 2D "turbulence"

Parashar et. al., PoP, 2011

Hybrid Vlasov

 $\Delta \mathbf{B}(t, \Delta t) = \mathbf{B}(t + \Delta t) - \mathbf{B}(t)$ $I = \frac{|\Delta \mathbf{B}|}{\sqrt{\langle |\Delta \mathbf{B}|^2 \rangle}}$

Intermittent, anisotropic heating, associated with higher order PVIs

$$\epsilon(x,y) = \frac{1}{n} \sqrt{\int (f-g)^2 d^3 v}$$

where g is the associated equivalent Maxwellian distribution computed from the parameters of f.

Greco et. al., PRE, 2012 6/8/13

Kennebunkport -06/2013

Karimabadi et. al., POP 2013

Haynes et. al., arXiv, 2013

Gyrokinetics

Tenbarge & Howes, arXiv, 2013

Velocity Shears

-131.651 130.255

0.67156827 1.1753927

t=0.0000000 п

jx t=0.0000000

-0.15972875 0.16095501

t=0.0000000

viv

Kennebunkport -06/2013

14

Velocity Shears

Kennebunkport -06/2013

17

Evidence from observations

Much larger than kinetic scales but one step closer to nanoflares idea.

Kennebunkport -06/2013

Bow Shock

Sundkvist et. al., 2007

ACE & WIND Data

Osman et. al., ApJL 2011

Put together

What about other processes?

What about other processes?

Can wave-particle interactions in the bulk of the plasma have a significant contribution?

What about other processes?

Classification issues?

- A "simple" scenario: Reconnection
 - Direct energization by the electric field
 - Outflow shocks
 - Waves in the reconnection exhaust
 - Island contraction
- Do all these classify as "low frequency"?
- If not, how do we separate the contributions?
- Similar issues with unstable regions (cyclotron, firehose etc.)

Where to go from here?

- Misleading to characterize dissipation as a couple of simple processes in terms of general description (personal view)
- (Personal) Favorite approach
 - Understand the strengths of different processes in idealized conditions
 - Output the relative play in simple but tractable systems
 - Find ways to empirically quantify the effects of above processes using spacecraft data

Where to go from here

Alexandrova et. al. 2012

Use the above understanding to improve (empirical) models

🏵 Landau Fluid

+(?)

Stochastic Heating $Q_{\perp} = \frac{c_1 (\delta v_i)^3}{\rho_i} \exp\left(-\frac{c_2}{\varepsilon_i}\right)$ Turbulent Dissipation Challenge!!

Kennebunkport -06/2013

 (\mathbf{x})

Thanks!