« Whistler versus KAW from Hall MHD »

$$
\begin{gathered}
\frac{\partial \rho}{\partial t}+\nabla \cdot(\rho \mathbf{u})=0, \\
\rho\left(\frac{\partial \mathbf{u}}{\partial t}+\mathbf{u} \cdot \nabla \mathbf{u}\right)=-\nabla P+\frac{1}{\mu_{0}}(\nabla \times \mathbf{B}) \times \mathbf{B}+\tilde{\nu} \Delta \mathbf{u}+\frac{\tilde{\nu}}{3} \nabla(\nabla \cdot \mathbf{u}), \\
\frac{\partial \mathbf{B}}{\partial t}=\nabla \times(\mathbf{u} \times \mathbf{B})-\nabla \times\left(\frac{(\nabla \times \mathbf{B}) \times \mathbf{B}}{\mu_{0} n e}\right)+\eta \Delta \mathbf{B}, \\
\nabla \cdot \mathbf{B}=0 .
\end{gathered}
$$

There are three well-known branches

__ Compressible branches

- - - Incompressible branches

R Right polarization
L Left polarization

KAW relation :

