SUMMARY BREAKOUT SESSION C Solar Energetic Particles

Sessions	Presentations		
(1) Longitudinal Spread of SEPs	4	Klecker	
(2) SEP Transport / Cross-field diffusion	6	Klecker	
(3) SEP Acceleration Mechanisms	7	Mewaldt	
(4) SEP Event Lists	3	Mewaldt	

SUMMARY BREAKOUT SESSION C Longitudinal Spread of SEPs

Classical Picture

(1) Impulsive Events

Localized source Low flux Electron-rich ³He-rich, etc

(2) Gradual Events

Extended Source High Flux Electron-poor, etc ³He Observed with ACE: Solar Minimum--Solar Maximum Comparison
•at solar maximum there are lots of ³He-rich events
•at solar minimum ³He-rich events are rare—provides a better opportunity to correlate events between different spacecraft without (much) confusion

ACE/SOHO/STEREO/Wind Workshop

³He rich Events at ACE, STEREO-Ahead, and STEREO-Behind

•an event observed on both STEREO spacecraft and on ACE

ACE/SOHO/STEREO/Wind Workshop

Wiedenbeck⁴

Event Observed over a Wide Range of Heliographic Longitudes

3-4 Nov 2008 event

•the STEREOs were located $\pm 41^{\circ}$ from ACE

•electrons were observed at all three spacecraft using STEREO/SEPT and ACE/EPAM

•³He and heavy ions with enhanced Fe/O were observed at STEREO-B and ACE

•the lack of an ion detection at STEREO-A might be due to sensitivity limitations

•results discussed in Wiedenbeck et al. 2010, SW12 Proceedings

SUMMARY BREAKOUT SESSION C Longitudinal Spread of SEPs: Jan 17, 2010

2010 June 8 - 10 ACE/SOHO/STEREO/Wind Workshop Long. Sep.: 169°

Dresing et al

6

SUMMARY BREAKOUT SESSION C Longitudinal Spread of SEPs

Zur Anzeige wird der QuickTime™ Dekompressor "" benötigt.

SUMMARY BREAKOUT SESSION C Longitudinal Spread of SEPs

<u>Non-beam events</u> (~500/700) can come from any longitude or can cluster about active region longitudes

Beam events

Spikes and Pulses (smaller events)—

Occur in sequences Tend to map to open field lines near flaring active regions

<u>**Ramps</u>** (larger events)— Isolated (or at culmination of sequences) Can map near or relatively far from flaring active regions Consistent with acceleration by CME-driven</u>

SUMMARY BREAKOUT SESSION C SEP Transport / Cross-Field Diffusion

Electron events with weak scattering in the inner heliosphere

- Haggerty & Roelof
- Agueda et al
- Wang et al.

Cross-field transport

- Chollet et al.
- Klecker et al.

Radial evolution of gradual SEP events

• Li

SUMMARY BREAKOUT SESSION C **SEP Transport / Electron Events**

Best-fit parameters $\lambda_1 = 3.2 \text{ AU}; \ \lambda_2 = 0.2 \text{ AU}; \ r_{he} = 1.2 \text{ AU}$

Fit with Monte Carlo Transport Model

Agueda, et al.

Solar Injection

Haggerty & Roelof

 $j_{+}(t) = j_{0}(t) + j_{m}(t)$

 $j_{m}(t) = j_{m}(t-2\tau)$

100

100

₫ 100

¹⁰⁰ لل

100 -^{LE} 100

ಶ

j Solar

10 10

DE4

SUMMARY BREAKOUT SESSION C SEP Transport / Electron Events

*Two different PAD behaviors at low and high energies:

At low energies (~0.3keV to E_0), the PAHM remains roughly constant below 30° (corresponding to an actual PAHM of <~15°, limited by the instrumental response) from onset through the peak.

At high energies (E_0 to ~300 keV), the PAHM increases with energy, e.g., from ~30° at E_0 up to 85° at 300 keV at the peak; it also increases with time.

The energy transition E_0 varies from ~10 to 30 keV, from event to event.

Summary for the five events

The ratio Λ of the peak flux of outward-traveling scattered electrons to field-aligned scatterfree electrons

At energies with $\rho_e < \rho_{Tp}$, electrons would be weakly scattered because of weak power densities for resonant fluctuations/waves at scale $\lambda < \rho_{Tp}$ (the dissipation range).

At energies with $\rho_e > \rho_{Tp}$, electrons would scatter more due to stronger power densities for fluctuations/waves at scale $\lambda > \rho_{Tp}$ (the inertial range), and the power-law increase of Λ with ρ_e may be associated with the power-law increase of turbulence power density with λ (P $\propto \lambda^{\beta}$).

L. Wang

SUMMARY BREAKOUT SESSION C Cross-Field Transport

Large -Scale:

Field line motion

2010 June 8 - 10 ACE/SOHO/STEREO/Wind Workshop

Chollet, et al.

SUMMARY BREAKOUT SESSION C Cross-Field Transport

Small-scale:

Cross-field diffusion

2010 June 8 - 10 ACE/SOHO/STEREO/Wind Workshop

Chollet, et al.

SUMMARY BREAKOUT SESSION C Cross-Field Transport - Small Scales

SUMMARY BREAKOUT SESSION C Radial Evolution of SEP Events

Helium Ions

SEP Measurements at different distances will provide information on turbulence / scattering

Gang Li

Solar Energetic Particle Breakout Session - Session C

R. Mewaldt and B. Klecker – Chairs

Summary of Session 3: SEP Acceleration Mechanisms Session 4: SEP Event Lists

R. A. Mewaldt – Caltech

ACE/SOHO/STEREO/Wind Workshop Kennebunkport, ME June 10, 2010

SEP Acceleration Mechanisms – D. K. Haggerty & E. C. Roelof

Look at ~700 electron events! Categorize profile, and probable source region

Beam events

<u>Spikes</u> and <u>Pulses</u> — Occur in sequences; map to open field lines near flaring active regions <u>Ramps</u> — Isolated; map near or far from flaring active regions; Consistent with acceleration by CME-driven shocks

<u>Non-beam events</u> (~500/700) can come from any longitude or can cluster about active region longitudes

When and Where are Impulsive SEPs Accelerated? Linghua Wang, R. Lin, S. Krucker, G. Mason

Need both low & high-energy electron sources (delay ~8 minutes) Averaged delay of ion release: 1.2 ± 0.2 hours

Source of ion acceleration?

- CME shock?
- Waves (from electrons)?
- Scattering?

Spatial Offsets of Interplanetary Electron and Ion Source Regions E. Chollet, R. Skoug, J. Steinberg, J. Gosling & J. Giacalone

RHESSI finds that electron and ion Source regions are separated

ULEIS and SWEPAM data show different ion & electron "dropouts" in ~1/2 of events

Using SEP Spectra to Diagnose Shock Geometry close to the Sun Gang Li, UAH

Consistent High Charge-State SEP Events on SEPICA Z. Guo, E. Moebius, M. Popecki, B. Klecker, G. Mason, & P. Bochsler

In some SEP events see evidence for high lonization states (e.g., $Q_{Fe} \ge +14$)

In most cases see energy-dependence, $Q_{Fe} \sim 10-12 \rightarrow 16-18$ with energy indicating stripping during/after acceleration

In six events see $Q_{Fe} \ge 14$ at all energies;

1 event has stripping profile 5 events no E-dependence → high-temperature source with T ~ 2-6 MK

Possibilities: Accelerate CME ejecta? High-T flare source?

SEP Fe Charge State Distributions: Implications for Sources

Mark Popecki, Eberhard Moebius and Berndt Klecker

Looked at 4 events; 3 had two temperature components

Testing for two concurrent sources in the 98/310 event

Halo CME and a long series of flares in W hemisphere between N22W18 and N24W81; cloud passage at Earth in latter part of event.

ACE News #127 11/2009

SEP Q-States above 20 MeV/nuc A. Labrador, R. Leske, R. Mewaldt, E. Stone, and T. von Rosenvinge

- Most high-charge-state events (Q_{Fe} ≥ 18) are Fe-rich
- Most events with Q(Fe) >16 occur in the western hemisphere
- Most high-charge-state events involve slower CMEs
- The largest SEP events are not high-charge-state events

Possibilities: Stripping? Direct flare contributions from flares? Remnant flare-suprathermals accelerated by CME-driven shock? **STEREO-1 & 2 SEP Electron Event List**

Nina Dresing, R. Gomez-Herrero, A. Klassen, and B. Heber.

STEREO/IMPACT/SEP Sensors

~50 Electron Events > 55 keV

WWW2.physik.uni-kiel.de/stereo/

intensities in 1//cm*2 s sr MeV)

Looking for feedback from users

den filmhar it uni-biel d

contact

	Event				Oncet	đt	Max (UT)	Max intensity	Emax	Link to
	Number	6/0	Doy	Date	(UT)	(min)	10 min av.	10 min av.	(keV) Remarks	browse plot
2007	1	٨	023	2007-01-23	18:58	4	19:36	1.79E+02	145	Link
	1	В	023	2007-01-23	19:10	4	19:56	2.07E+02	145	Link
	2		024	2007-01-24	01:05	1	01:36	2.44E+02	145	Link
	2	В	024	2007-01-24	01:00	1	01:26	2.68E+02	145	Link
	3		024	2007-01-24	05:50	1	05:56	4.30E+02	165	Link
	3	В	024	2007-01-24	05:45	1	06:16	5.39E+02	165	Link
	4	~	139	2007-05-19	13:43	5	18:06	4.20E+02	375	Link
	4	В	139	2007-05-19	13:58	5	18:45	5.49E+02	375	Link
	6		140	2007-05-20	~6:00	1	10:26	3.05E+02	225On the decay phase of previous event. Probably new injections on May 22	Link
	6	В	140	2007-05-20	~6:00	1	11:16	2.92E+02	225On the decay phase of previous event. Probably new injections on May 22	Link
	8		143	2007-05-23	08:22	1	11:26	4.98E+02	295Onset during ICME. Decay during CIR (ion contamination)	Link
	6	В	143	2007-05-23	08:12	1	13:06	4.95E+02	295 Onset during ICME. Decay during CIR (ion contamination)	Link
	7	- ^	207	2007-07-26	02:09	5	05:16	1.40E+01	65 Very small event - poor statistics	Link
	7	В	207	2007-07-26	02:43	5	05:06	4.20E+01	65 Small event - poor statistics	Link
	8		210	2007-07-29	02:16	10	06:56	3.34E+01	200 Şmail event	Link
008	9	^	096	2008-04-05	16:30	1	16:45	2.53E+02	225Only In A	Link
	10	В	141	2008-05-20	14:03	1	14:06	4.28E+01	150Only in B. Impulsive onset	Link
	11	- ^	272	2008-09-28	22:36	10	02:16	3.49E+01	Uncertain event, slowly rising profile	Link
	12	- ^	308	2008-11-03	23:54	3	00:56	1.72E+01	150 impuisive	Link
	12	В	308	2008-11-03	23:29	1	00:36	1.31E+02	145 impulsive	Link
	13		309	2008-11-04	?	10	06:56	3.18E+01	145 impuisive, uncertain onset due to overlap with previous event and poor statistics	Link
	13	В	309	2008-11-04	04:10	1	06:16	2.11E+02	145 impuisive, overlaps previous event.	Link
	14		346	2008-12-11	09:54	5	10:36	1.47E+01	145 Small event, only in A	Link
009	15		118	2009-04-28	11:43	5		4.12E+01	200	Link
	16		122	2009-05-02	19:54	1	20:46	4.55E+02	300	Link

List of 2 – 15 MeV Proton Events From STEREO/LET

R. A. Leske and C. M. S. Cohen, Caltech

List generated automatically *automatically*. Still being tested. Includes CIRs Quantities tabulated so far include:

- Start and end times (using 3-hour average rates)
- Proton peak intensities and fluences (4 energy bands each)
- Proton spectral index (with statistical uncertainty)
- He/H ratio (with statistical uncertainty)
- Guesstimate of event type (CIR or SEP) and whether or not electrons were detected by SEPT

The draft list (and accompanying plots) is available in a link under

http://www.srl.caltech.edu/STEREO/Level1/LET_public.html

Automatically generated event list for STEREO-LET, requiring that 3-hour averaged 1.8-3.6 MeV proton rate exceeds 5x10⁻⁴ particles/(cm² sr s MeV)

Peak Proton Intensities often occur at different times for each energy bin. Proton fluences have had a constant background assumed to be 2.3x10^-5 particles/(cm²2 sr s MeV) subtracted.

The "2-Point Index" is obtained from the 1.8-3.6 and 4-6 MeV proton FLUENCES The He/H ratio is that of the 1.8-3.6 MeV/n proton and He FLUENCES, where a constant background of 1x10⁻⁵ particles/(cm²2 sr s MeV/n) has been subtracted from the He. Uncertainties in the index and He/H are statistical errors ONLY.

Event Types are tentative identifications ONLY, automatically determined based on spectral hardness and He/H ratio. Events with an added "?" fall within one standard deviation of the chosen boundary between SEPs and CIRs in at least one parameter (index or He/H). An "e-" after the type indicates that the peak of an SEPT electron event falls between the event start and end times.

STEREO-Ahead/LET:

From 2007/005 through 2010/125, <u>111</u> events are found on Ahead, and <u>104</u> on Behind.

Evt Start time Proton Fluences: p/(cm² sr MeV) End time Peak Proton Intensities p/(cm2sr s MeV) 2-Point Index | He/H @1.8-3.6 | Type # Year DOY Year DOY 1.8-3.6 4-6 6-10 10-15 1.8-3.6 4-6 6-10 10-15 | Value +/-Value +/-_ _ _ _ _ _ _ _ _ _ 0 2007 5.500 2007 11.500 0.00853 0.00093 0.00016 0.000085 2282.74 228.602 39.232 9.70986 -3.421 0.035 0.0453 0.0017 CIR 1 2007 11.500 2007 15.375 0.00076 1104.18 150.959 38.696 8.70357 -2.982 0.044 0.0107 0.00744 0.00020 0.000085 0.0012 SEP 5.030 2 2007 15.375 2007 20.000 0.00676 0.00027 0.00008 1098.87 48.691 1.93305 -4.543 0.071 0.0160 0.0014 CIR 0.000061 3 2007 20.000 2007 23.375 0.00410 0.00051 0.00009 622.44 52.952 5.547 1.26934 -3.648 0.071 0.0121 0.000052 0.0017 CIR 4 2007 23.375 2007 27.125 0.01391 0.00236 0.00077 0.000165 2896.73 475.221 75.101 8.86257 -2.722 0.025 0.0349 0.0013 SEP e-5 2007 27.125 2007 32.750 1.19883 0.17764 0.02368 0.001807 152012.38 20849.186 2933.217 268.17221 -2.978 0.004 0.0101 0.0001 SEP 6 2007 32.750 2007 40.625 0.04022 0.00324 0.00051 0.000075 9608.59 900.100 99.935 7.20539 -3.514 0.017 0.0153 0.0005 CIR 7 2007 40.625 2007 48.375 0.07270 0.00234 0.00009 0.000052 12086.64 435.903 15.325 2.12264 -4.822 0.023 0.0274 0.0006 CIR 48.375 2007 57.500 64.450 8 2007 0.07684 0.00661 0.00039 0.000056 18048.19 1264.659 2.53850 -3.917 0.014 0.0337 0.0005 CIR 9 2007 57.500 2007 63.500 0.03764 0.00054 0.00006 0.000052 2734.57 35.257 2.871 2.00355 -6.189 0.080 0.0191 0.0010 CIR 10 2007 71.000 2007 76.625 0.32895 0.01972 0.00098 0.000066 44769.91 2247.970 90.794 4.11317 -4.373 0.011 0.0362 0.0003 CIR 11 2007 76.625 2007 84.125 0.00440 0.00028 0.00009 0.000066 969.04 56.059 10.299 2.11121 -4.180 0.067 0.0179 0.0016 CIR

Progress on Automating the Identification of ³He-rich Periods using the STEREO/LET Instruments

M. E. Wiedenbeck, JPL/Caltech

Quantity	Trial Value
³ He energy	2.3-3.8 MeV/n
Time Interval	3 days
³ He counts	≥10 counts
³ He/ ⁴ He	≥0.1
Valley/ ³ He	≤0.5

Will be online soon at Caltech/STEREO site

