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From Gloeckler and Fisk, 2006

The main question is: 
what produces the superthermal particles?

Note: 10 times the wind speed = 250 keV in the fast wind



Background 
• Fisk and Gloeckler (F & G)have published an 

extensive series of papers on observed  superthermal
tails and the nature of their velocity spectrum – very 
frequently f(v) ∝ v-5.  

• A paper of theirs appeared in 2008, which presented a 
theory of the f(v) ∝ v-5 spectrum, based ondiffusive-
compression acceleration. 

• Jokipii & Lee (J&L) published paper on compression 
acceleration which included comments on the Fisk & 
Lee 2008 paper.  (Ap. J. April 10).



The acceleration of a charged particle in a collisionless 
MHD fluid is given by:

One may use the latter relation to express the energy 
change in terms of B and U.   Since the position is needed 
we must also study spatial transport as well.



The Parker Equation can be used

Where the drift velocity is:

This equation applies if there is enough scattering to 
produce near-isotropy.

) Diffusion

)  Convection w. plasma

) Grad & Curvature Drift

) Energy change

) Source



This is a cartoon representation of compression acceleration for slow 
fluctuations in the fluid velocity.  

The diffusion length LD = κ/δU must be larger than the spatial scale of the 
fluid fluctuations.  Hence the particle samples many random velocity 
fluctuations and diffuses in velocity.   

But, at the same time, the scattering mean free path λ must be small 
compared with the velocity fluctuation scale so that diffusion applies.

Compression Acceleration (suggested ~ 30 years ago)



Particle Conservation is fundamental.

In 3-D physical space, x,y,z , we have 

But if it is spherically symmetric with a radial velocity Ur

Hence, in velocity space, with isotropic velocities, the 
velocity magnitude rate of change becomes the acceleration a

+ Q – L       (source - loss)           

+ Q – L       (source – loss)



The Parker equation can be rewritten in the 
manifestly conservation-law form

) - div (flux in space)

)  - div (flux in velocity)

)   Source - Loss

This equation requires only enough scattering to maintain 
near- isotropy.  It is the starting point of all existing 
discussions of compression acceleration. 



J&L Ap. J. 2010

• The analysis is to lowest order in δu (in an 
approximation called quasilinear theory). 

•
• In this approximation, the resulting equation 

is diffusion in velocity.

• We include the possibility of drifts and 
gradients in κ, but they do not appear to this 
order.



Diffusive compression acceleration for the simple case 
where U = δ U has zero mean and f = <f> + δ f = f0 + δ f, 
where f_0 is constant (homogeneous in space), 
can be derived in one spatial dimension (x) as follows:

Take the average of Parker’s equation to obtain

Subtracting this from Parker’s equation yields (discarding 
second-order terms) :

Note: hereinafter κ is the spatial diffusion coefficient.



This can be solved for δf in terms of the diffusion 
solution for diffusion from a point source at x’:

to obtain (going now back to 3 spatial dimensions):

Substitution of this into the original equation for f0 yields



Now we must make one critical assumption, which is 
not often mentioned.   The solution for δf solves only 
the linearized equation.   It is only valid for a finite time 
depending on the magnitude of δU.   Call this time t1

Our solution has ‘history’ terms.  These will go 
to zero if t1 is much greater than the coherence time 
of δU, but small enough that the approximation is 
valid.   Thus this is a multiple-time-scale problem.  

The time for the validity of the approximation must be 
greater than the coherence scale.   Then we obtain a 
Markov process  (velocity diffusion)  - independent of 
the history.  



We finally obtain the transport equation:

One example: the solution for D v2 = D’ = const, for a source at v0
is

This is diffusion in velocity.  Note the 1/ v2



In contrast, Fisk and Gloeckler’s (2008) 
Transport Equation:

• Fisk and Gloeckler proposed an equation of the 
form:

• Clearly, this has a possible steady state f ∝ v-5.  f 
has an additional spatial dependence which is 
not shown.   This does not affect the argument. 

• It can be shown that this equation does not 
conserve particles:  define 

Then dn/dt is not zero in general. This is because 
their equation is not in conservation-law form.



As one example, consider the initial, steady spectrum Av-5 and 
then superpose a small bump at velocity v0.   For a spatial  
diffusion coefficient κ which is independent of v, we find the time-
dependent solution:



This solution can be integrated to find the 
change in N with time:

The number of particles for a small fluctuation, starting at any
velocity v0 grows exponentially.   This can be shown 
numerically to be also true for other forms of κ.

Since v0 can be any velocity, we conclude that the equation 
proposed by Fisk and Gloeckler in 2008 does not conserve 
particles at any velocity.  This is not a boundary issue.  



General Constraints on 
Acceleration

• There are many recent issues and new  proposals 
concerning the acceleration of fast charged particles in the 
Sun and heliosphere. 

• I will discuss fundamental constraints – spatial, temporal.

• Statistical Acceleration (e.g., G&F)

• Reconnection (Lazarian, Drake).  



NOTE: this is the step that is the source of the disagreement.

From F&G  -- latest:



The energy change of a charged particle in the absence of 
collisions comes from the electric force. In a collisionless MHD 
fluid this may be written:

One may use the second relation above to express the 
energy change in terms of B and U.   Since the position is 
needed we must include spatial transport as well.



Observational Constraints on the Time 
Taken to Accelerate

• SEP ions and electrons – acceleration time apparently 
less than minutes.  Significant temporal changes occur in 
seconds, but these may not reflect acceleration times.  
These are not significant constraints now. 

• Heliospheric Particles 
– The only real constraint is the time available for 

acceleration.   At present these are not significant 
constraints.

• Anomalous Cosmic Rays 
– The observed ACR charge states limit the acceleration 

time of ACR to less than a few years (e.g., Adams, 
1991; Jokipii, 1992; Mewaldt, etal, 1996).



Spatial Constraints

• Larger systems can accelerate to higher 
energies.

• In quasi-static flows such as shocks and 
reconnection events, the available electric 
potential is relevant and can be a serious 
constraint.   



Stochastic vs Deterministic  
Acceleration 

• Stochastic acceleration 
– Example: 2nd-order Fermi 
– Involves  a random walk or diffusion in energys.

• Deterministic acceleration 
– Examples:  Diffusive shock acceleration, 

reconnection.
– Usually is uni-directional in energy – can involve 

a directed electric field.   



Stochastic Acceleration
• Has appeared in various forms since Fermi’s 

famous paper on 2nd-order Fermi acceleration by 
randomly moving magnetic clouds.  

• The acceleration time may be approximated, 
quite generally, as
where τ scat is the time for magnetic scattering.

• The lowest value of τst is clearly when τscat = τgyro
,  the particle cyclotron period.

• This is generally very slow.   Applying these 
considerations to the heliosheath and ACR 
yields τst ≈ 100 yr, which is much too long. 



Stochastic rate of energy change:

In one interaction, depending on the sign of Va or B, ∆ T = 
(+/-) q E rg = q rg Va B/c.  Hence, after n interactions the 
total mean square energy change is <(T-T0)2> = n ∆ T2 .   
where n < time/τg.   

The maximum acceleration rate is then 
1/τst, max ≈ (Va

2 /w2) 1/ τg ≈ Va2 /(w κΒ).  This is the same 
as on the previous slide.



Finite-Scale Compressions
• Consider compressions and expansions of finite scale -> δu 

with scale λ.  Suppose particles remain a characteristic time 
τ in each compression or expansion.  

• If the diffusion coefficient is κ, then τ = λ2/κ
• We then have the change in energy T, ∆T ≈ (δu /λ) T τ.
• Then the energy diffusion coefficient, Dtt≈ <(∆ T)2>/τ = <(δ

u)2>/κ T2

• Depending on the value of \kappa, we get different energy 
diffusion rates.   Len Fisk pointed out that if κ is the 
perpendicular diffusion, κ⊥, which can be much less than the 
Bohm limit we can beat my upper limit,.  

• But, in this limit, we should also worry about guiding-center 
drifts.  Vd ≈ w rg/λ, where w = particle speed.  

• Setting τ = λ/Vd in the above gets back to my original limit 
which can be written <(δ u)2> /(w rg).



Deterministic Acceleration: The Role 
of Electrostatic Potential Energy

• In an MHD fluid, the electric field E = -U x B/c is specified by 
the flow velocity and magnetic field.  

• In approximately steady flows such as in quasi-perpendicular 
shocks and reconnection, the maximum energy is just Tmax ≈ q 
∫ E⋅dl ≈ q ∆ φ ≈ qUBL/c.  

• Example: using this in the latitudinal direction in the 
heliosphere, integrating from 0 to π/2, at any fixed radius R in 
the solar wind in theTmax ≈ 300 Z MeV.

• Applying this to the heliospheric termination shock then readily 
yields the ≈ 200 MeV/charge anomalous cosmic-ray (ACR) 
energy.   The termination shock can readily give us the ACR.



The solar-wind termination shock is 
essentially a perpendicular shock.   
Hence the energy gain comes from 
drift in the -U x B/c electric field.   

The change in electric potential 
between the pole and the equator is ≈
300 Z MeV

Hence this this can readily provide 
the 200 MeV kinetic energy.



Lazarian and Opher (2009) proposed turbulent reconnection in the heliosheath, with 
multiple Sweet-Parker reconnection regions. 



Drake, et al, 2009 had a different proposal which also involved reconnection:



Analysis of Acceleration in 
Reconnection

• Recent papers (e.g. Lazarian and Opher, 2009, and Drake, et 
al, 2009) have proposed acceleration at reconnection events 
in the heliosheath, based on 2-dimensional simulations.  ACR 
cannot be accelerated in a single event, as suggested by 
Lazerian and Opher.  

• The electric field E = -U x B/c is normal to the frame of the 
simulation.   |U| is about the Alfvén speed in the heliosheath, 
which is significantly less than the solar wind speed.  Hence 
the electric field is significantly smaller.

• Hence, even if the scale of the reconnection event is the 
scale of the heliosphere, a single reconnection event cannot 
yield the 200 MeV/charge ACR. 



Consider the electric field.  

To gain energy, the particles 
must drift in the direction of the 
electric field.

Since the flow speed is Va, 
which is significanlty less than 
the solar wind speed, the 
required spatial scale is larger 
than the scale of the 
heliosphere. This is not likely.



• Drake, et al suggest multiple, coalescing 
reconnection ‘islands’, which may not be 
subject to the length-scale argument.

• Th time to accelerate must be considered.   
If particles gain of order ∆T = q rg E = q rg
Va B/c in each interaction, and each 
interaction takes a gyroperiod 2 π/ωg, then 
acceleration of oxygen to 200 MeV takes 
about a year, which is fine.

• So, multiple consective reconnection 
islands, with no time in between islands 
satisfies the primary constraints. 





Next, consider the Parker Transport 
Equation

Where the drift velocity Vd due to the large scale 
curvature and gradient of the average magnetic field is:

) Diffusion

)  Convection w. plasma

) Grad & Curvature Drift

) Energy change

) Source



• Most  models of reconnection published to date use 
incompressible MHD.  Hence ∇ ⋅ U = 0.  (

• Parker’s equation only accelerates particles if ∇ ⋅ U 
is finite and negative.  

• Since Parker’s equation has been shown to be valid 
for nearly-isotropic particle angular distributions, 
acceleration in reconnection models requires 
significant anisotropies pointed out by Drake, et al 
Ap. J. 709, 963, 2010).

• This may be difficult to do, because scattering times 
are generally shorter than the acceleration times.  
We need τscat ≈ the acceleration time, or one year.  
The mean free path is >3000 AU  Note to 
observers: look for large anisotropies.  



Summary and Conclusions
• The frequently observed v-5 observed 

superthermal particle spectrum is important and 
needs explanation.

• Compressive-diffusion acceleration may be a 
solution.   The equation must have a specific form 
to conserve particles.  Fisk-Gloeckler 2008 does 
not conserve.



• Charged-particle acceleration in the 
heliosphere, especially of the ACR remains 
difficult.  The termination shock can do it. 

• Statistical acceleration is too slow.
• Reconnection has been proposed, but issues of 

the large anisotropies and mean free paths 
must be resolved.

• The ACR can be accelerated at the termination 
shock, if the acceleration has hot spots which 
the Voyagers missed.  
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