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Questions:

1.- How often do we see proton excited waves at IP shocks?
2.- what are their properties, and dependence on shock
parameters, 0g, M, 57

Outline of talk:

-Stream Interaction Shocks observed by STEREO A and B,
2007-2009

-Quasi-Perpendicular shock profiles and waves
-Quasi-Parallel shock profiles and waves

- Summary



During solar minimum most interplanetary shocks are produced
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by stream interactions:

Ambient
Solar Wind

Ambient

Solar Wind \

] I Tl A I 1 A 1
(] o B 1z 1% 1]

Muy 17 May 18, 1999
Universal  Time

CIR/SIR sketch Observation of CIR/SIR

Jian et al., 2006
e Because the magnetic and velocity structure is not co-aligned with the rotational axis, fast
streams collide with slow streams as the Sun rotates.

e As streams move outward in the solar wind, the interaction regions steepen, the Alfvén and
sonic speeds drop, and shocks form.



STEREO shocks:

¢SIRs produce weak shocks
near the Sun and strong
shocks far from the Sun. Beta
of the plasma remains “high”
everywhere.

eDuring 2007-2009 STEREO
spacecraft have observed
around 100 low-moderate
Mach number (M, 1.1~2.5)
shocks.

eMost of these shocks are
quasi-perpendicular (6g, >
45°), with only 20 quasi-
parallel (65, < 45°), shocks.

e Plasma betaisupto 7.5

Mms |

Interplanetary Shocks observed by STEREO
2007-2009
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Quasi-Perpendicular Shocks Upstream Waves

Transverse whistler Compressive whistler
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Summary upstream

-Amplitude increases with Mach
number
-0,,, tends to be large

-In the majority of the cases 0g,, < 30° b
-Waves frequency, f~1 Hz (s/c frame).

Shock generated?
Electron generated?

whistler properties
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In a few cases, quasi-perpendicular shocks(0;,=68, Oct 26, 2009) have an upstream
region with low frequency, f ~0.01-0.1 Hz waves , which resemble fluctuations upstream
of quasi-paralel shocks...
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Enhanced downstream waves,
quasi-perp (0g,=67)
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Waves downstream of quasi-perp shocks

Mirror mode storms
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Mirror mode storms are observed downstream of quasi-perpendicular shocks. They can
appear with the “typical” mirror mode drop shape, or as peaks in the field magnitude.



*Mirror mode storms (YELLOW) have been frequently found
downstream of forward SIR shocks, and also inside
the SIR (not close to the FW shock)
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Mirror mode structures inside
the storm follow an
evolutionary pattern. They
appear first as small amplitude
peaks which may sometimes
grow in amplitude and
disappear. Then holes are
observed becoming large
amplitude structures.

This is in agreement with
mirror mode observations in
planetary magnetosheaths
(Earth, Jupiter, Saturn).

We believe the shape of the
structures is controlled by the
combination of 3 plus
temperature anisotropies
(Genot, et al., 2009).
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Mirror mode events
are related to Helium
suprathermal events
observed by
PLASTIC.

Helium suprathermal tail event
inside a SIR in the same period
where mirror mode storms where
found. Red lines mark the edges of
the SIR.

In this event the mirror mode storm
lasts 8 hours!

-Helium presence may be
important for mirror mode growth
overcoming ion cyclotron waves
growth rate.
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Waves upstream of quasi-parallel shocks
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It is probable that the high frequency component is

related to whistler precursors which have been

modified in the foreshock by backstreaming ions.

The lower frequency waves may be generated

locally via a beam driven instability
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¢ Although most of the waves upstream STEREO-A 2008/10/31 RTN Coordinates
of the quasi-parallel foward shocks Br
observed to date by STEREO are (nT)-
transverse, there is evidence that some :
steepening may take place forming
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Evidence of shocklet-like structures were found by Wilson et al. (2009) upstream of IP
shocks observed by WIND



Waves downstream of quasi-par
shocks, 05,=32, M _.=1.87
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Wave amplitude observed upstream from shocks

e \Waves upstream from quasi-
parallel shocks propagate at
small angles to B,. This is in
contrast to whistler precursors
associated with quasi-
perpendicular shocks, which
can propagate obliquely.
Whistler amplitude drops with

GBok'

e\Wave amplitude changes
with 65, and distance from
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Large Foreshock extensions, up to ~30 Rg
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No time to go into details on shock changes of geometry with helio-longitude
and consequences on wave spectra
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Conclusions

e STEREO observations during the extended solar minimum have provided a good
opportunity to study interplanetary shocks with low to moderate Mach numbers (M,
1.1~2.5) generated by stream interactions.

e Most shocks are quasi-perpendicular and accompanied by whistler precursors.

e While some shocks are laminar, with a well defined transition, other show features
like a foot and overshoot combined with whistler precursors. This tells us that there is
not a sharp separation between subcritical and supercritical shocks.

e Whistler characteristics are variable, some propagate at small angles and are non-
compressive circularly polarized. Others propagate at oblique angles and show a
compresive component.

e Mirror mode storms have been observed downstream from quasi-perpendicular
shocks.

e Quasi-parallel IP shocks are preceeded by foreshocks, where @ mixtiire of waves
exists. In contrast to planetary foreshocks, most of these waves are non compressive,
but there are a few regions where steepened shocklet-like structures develop. Wave
spectra seems to be formed by both, whistler waves and locally generated lower
frequency fluctuations.

eUpstream wave amplitude drops for quasi-perpendicular shocks, but this drop is not
as dramatic as for Earth’s bow shock.



Future work
eComparison of wave spectra with shock acceleration

models.
eOrigin of mirror mode storms. Helium related?

elon distributions, wave origin.

eModels need to take into account the fact that wave
characteristics are variable as well as the shock
structure.

eSimilar studies for ICME shocks



