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Abstract.

We examine the probability distribution functions (PDF's) of uctuations of

magnetic �eld components using the Ulysses and Omnitape datasets to evaluate

departures from Gaussian distributions. Functional �ts as well as moment comparisons

(kurtoses) are used in drawing conclusions concerning the degree of non-Gaussianity.

Short-time-scale uctuations are separated, to the extent possible, from the longer-

time-scale variation of the mean �eld, and attention is paid to data selection issues

such as stationarity. At the present level of comparison, it seems that departures from

Gaussianity of the distributions of the uctuations are not severe. The analysis is

carried out in the mean �eld coordinates in which the uctuations of components are

close to being uncorrelated, and it is observed that the perpendicular components are

closer to being Gaussian than the parallel one. It is shown that the kurtosis is highly

exaggerated when the variation of the mean �eld is not taken into account. We further

examine the distributions of hourly magnetic �eld uctuations in fast and slow solar

wind at di�erent phases in the solar cycle in order to quantitatively describe departures

from the Gaussian distribution. It is found that the kurtosis lies between 2.8 and 4.8 for

all components in the mean �eld coordinates, in both fast and slow wind and near solar

maximum and near solar minimum. It appears that the distributions of uctuations are

rather more similar with regard to their degree of non-Gaussianity than might have been

expected based upon the well documented di�erences in the characteristics of fast and

slow solar wind intervals. This suggests a robust form of statistical similarity that may

be associated with either in situ or source region nonlinear e�ects. In addition to the
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distributions of the uctuations, we present the distributions of the mean �eld and of

the variances of the components which are more likely to be inuenced by solar sources

than by interplanetary dynamical processes. The PDF's of variances of the magnetic

�eld components over di�erent subintervals approximate lognormal curves, and provide

the motivation to compute the PDF's of the uctuations using the approach of Castaing

et al. [1990], which is a superposition of Gaussian distributions with variances that

are distributed lognormally. The resulting PDF's of the uctuations provide a good

model to describe the small departures from Gaussian distributions seen in the observed

PDF's. An additional step is taken to compute the expected PDF of the magnitude of

the uctuations from the Castaing PDF's of the components, and is also seen to be in

good agreement with the observed PDF.



4

1. Introduction

The probability distribution function (PDF) describes the relative frequency of

occurrence of magnetic uctuations (b) in a turbulent medium such as the solar wind.

It is of comparable importance in solar wind research to the role of the PDF of velocity

uctuations in turbulent hydrodynamics [see, e.g. Monin and Yaglom, 1975] to the

degree that in the solar wind both the velocity and magnetic uctuations are reasonably

well described by magnetohydrodynamics (MHD). The PDF of b(x; t) (spatial x and

time t coordinates) is of fundamental importance in any statistical description of the

uctuations, whether it be kinematic or dynamical. Therefore it is essential to provide

for it a �rm observational basis, which is the principal goal of the present paper. Of

particular importance is the degree of departure of the PDF from the Gaussian or

normal distribution, which is a reference distribution for a variety of reasons. The

uctuations are normally distributed if the PDF's of the components are:

Pi(bi) =
1

p
2� �i

exp

 
�

b
2
i

2 �2
i

!
; i = 1; 2; 3 ; (1)

where �2
i = hb2i i is the variance and the angular brackets denote ensemble averaging.

As a baseline for many further and more sophisticated statistical studies, one would

like to have an observational consensus regarding the quantitative degree to which the

distributions depart from Gaussian. Unfortunately such a consensus does not appear

in the published literature, and there are widely disparate reports of the degree of

\non-Gaussianity" [Whang, 1977; Feynman and Ruzmaikin, 1994]. Clari�cation of this

observational issue is one of our motivations for the present paper.
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There are also important motivations that arise from a theoretical perspective.

For example, it is well known in homogeneous hydrodynamic turbulence theory that

nonlinearities vanish when the triple correlations (third moments of the PDF) vanish

[e.g., Lesieur, 1990; Monin and Yaglom, 1975]. A similar feature is obtained for

incompressible MHD turbulence [Grappin et al., 1982]. Since triple correlations vanish

for a Gaussian �eld, it is clear that non-Gaussianity is required for nonlinearity.

Therefore, for incompressible and nearly incompressible [Zank and Matthaeus, 1993]

turbulence the degree of non-Gaussianity is a measure of nonlinearity and turbulent

activity.

A related issue is that of \quasinormality." The quasinormal hypothesis, also

known as the Millionshchikov [1941] hypothesis [see also, Heisenberg, 1948; Monin and

Yaglom, 1975], is the approximation that the value of fourth order moments take on

their Gaussian values, while the third order moments are permitted to depart from their

Gaussian value of zero. Clearly, distributions for which this hypothesis is valid need

not be precisely Gaussian but may exhibit distinctive but small non-Gaussian features.

One particularly important application of Millionshchikov's hypothesis is in dynamical

closures such as the eddy-damped quasinormal Markovian model [\EDQNMA," see,

e.g., Orszag, 1970; Monin and Yaglom, 1975] in which the quasi-normal approximation is

invoked to derive a dynamical equation for the third order moments. An EDQNMA has

been developed and solved numerically for MHD in a solar wind context [e.g., Grappin

et al., 1983]. Other applications of the quasinormal approximation include its use to

evaluate pressure spectra in hydrodynamics [Batchelor, 1982] and weakly compressible
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MHD density spectra [Montgomery et al., 1987]. The latter theory was o�ered as an

explanation for observed \Kolmogoro�-like" density spectra observed in the solar wind

[Goldstein and Siscoe, 1972] and in the interstellar medium [Armstrong et al., 1980].

The quasinormal approach has many applications in turbulence, a large number of

which may not yet have been exploited fully in solar wind research. A better empirical

understanding of the conditions for applicability of the quasinormal approximation

in the solar wind would help to clarify and possibly motivate further applications of

this type. This requires a statistically defensible baseline calculation of the degree of

non-Gaussianity of the magnetic �eld uctuations, which is the goal of this paper.

In one of the earliest works on probability distribution functions (PDF's) of

uctuations of interplanetary magnetic �eld components, Whang [1977] concludes

that the uctuations were Gaussian to a good approximation, but does not provide

a quantitative measure of the departures from Gaussianity. Since then a number of

authors have written about the non-Gaussianity of the PDF's, but we note that there

is neither uniformity in the various analyses nor do they all refer to PDF's of the

same physical quantity. Whang [1977] studies the components in the principal axes of

anisotropy of the uctuations of the magnetic �eld over short time periods (6 hours).

Feynman and Ruzmaikin [1994] carry out their analysis using hourly averaged data

over one year. They present the PDF's of the magnitude of the �eld and of one of the

perpendicular components in the GSE coordinates, and do not attempt to separate

the uctuations from the variations of the mean �eld. They conclude that the two

PDF's are neither Gaussian nor lognormal, and provide a quantitative measure of the
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departures from Gaussianity.

Marsch and Tu [1994] present the PDF's of increments (at various lags) of

the magnetic �eld components in the RTN coordinate frame. Their data set spans

approximately eight days, and they �nd that the PDF's are progressively more Gaussian

at larger values of the lag. Computation of increments eliminates dependence upon

the mean �eld in the data set, but only in the case of a constant mean �eld. Kabin

and Papitashvili [1998] present the PDF's of increments (at short lags) of one of the

components in the RTN frame. Sorriso{Valvo et al. [1999] and Bruno et al. [1999]

compute PDF's of the normalized increments (the standard deviation on subintervals

is normalized to unity before the data from di�erent subintervals is combined) of the

magnitude and of one of the components of the magnetic �eld in the RTN coordinate

frame. Burlaga [1991b] studies only the PDF of the magnitude of the magnetic �eld,

and not of the vector components.

We should remark at this point that many of the above studies are oriented towards

study of small scale \intermittency" which is signi�ed by non-Gaussian values of higher

order moments [Monin and Yaglom, 1975], and in particular the increase of this e�ect

for data computed with smaller increment lags. This signi�es important features of the

derivatives of the turbulent �eld b, in contrast to the primitive turbulent �eld itself. It

is however very much outside the scope of the present study, which focuses exclusively

on the PDF of the primitive �eld b, and which is motivated quite di�erently, as we

emphasized in our opening paragraphs above.

A quantitative measure of departure from the Gaussian distribution is provided
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by the kurtosis of a random variable 
 = h
i + !, de�ned as � = h!4i=h!2i2. For

a Gaussian distribution all odd central moments vanish, h!(2m+1)i = 0, m = 1; 2; : : :,

while all even central moments are determined by the variance h!2i. The kurtosis has a

value � = 3 for a scalar random variable or a component of a vector having a Gaussian

distribution. Suppose a signal with zero mean consists of �xed intensity pulses with

�xed duration that occur at random times and with random signs, and that the fraction

of time in which the pulses are \on" is f . Then one can easily see that the kurtosis is

� = 1=f . Thus the kurtosis behaves like the reciprocal of the \�lling factor" for the

signal.

When a random �eld displays a nonuniform or bursty character in either space

or time, it can be said to be \intermittent". This corresponds to a small �lling factor

f , and a large kurtosis compared with nonbursty signals. Typically, intermittency is

associated with an elevated probability of large values, and a concomitant decrease

in the occurrence of small values. Highly intermittent signals necessarily have a

non-Gaussian distribution [Monin and Yaglom, 1975, vol. 2, p. 241 and 271]. In recent

years the emphasis in intermittency studies has been placed on the progressively

greater non-Gaussianity that is seen at small scales, and in particular the greater

non-Gaussianity displayed by the spatial derivative of the primitive turbulent random

�eld. Small scale intermittency and intermittency of dissipation is a topic of great

interest in hydrodynamics [She and Leveque, 1994; Wang et al., 1999] and in

magnetohydrodyamics (MHD) [Politano and Pouquet, 1995] and space plasma physics

as well [Burlaga, 1991a, Marsch and Tu, 1994, Marsch et al., 1996, Bruno et al., 1999,
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e. g.], and the departures from Gaussian distributions are described frequently by study

of the scaling of higher order moments. The beta model [Frisch et al., 1978] and

multifractal representations [Burlaga, 1991b; Kabin and Papitashvili, 1998] are familiar

examples.

Here we are interested solely in the question of the non-Gaussianity of the turbulent

magnetic �eld itself, not its derivatives, or the spatial distribution of dissipation.

We present PDF's that arise from a new analysis of data that is distinct from the

previous analyses. We view the PDF of the magnetic �eld in the solar wind plasma

as the superposition of the PDF of the mean �eld, presumably a property of the

solar source, and the PDF of uctuations relative to the mean �eld. Operationally,

the uctuations are on a short time-scale, while the mean �eld varies on a longer

time-scale. Data analysis carried out from this perspective leads to the conclusion

that the deviation of the PDF's of the uctuations of the magnetic �eld components

from Gaussian distributions is not as signi�cant as it may seem when the mean �eld

variation is not taken into account [Feynman and Ruzmaikin, 1994; Ruzmaikin et al.,

1995]. Our analysis is most directly comparable to that of Whang [1977] and Feynman

and Ruzmaikin [1994], and reconciles the opposing conclusions of the two works. We

base our judgement on quantitative measures of departures from Gaussianity provided

by the kurtoses � and the goodness-of-�t parameter �2. Note that while it is plausible

that our conclusions may be comparable to those of the works on PDF's of increments

[e. g. Marsch and Tu, 1994] at long lags (1 hr or longer), the precise relationship of

PDF's of uctuations from the mean �eld to those of increments is not clear. For very
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short lags, the PDF of increments of a �eld approach the PDF of its derivative, while at

very long lags (longer than typical correlation times of about 6 to 12 hours in the solar

wind), the PDF of increments of a �eld approach the PDF of the �eld itself.

It has been shown [Hartlep et al., 2000] that if the components of a vector have

Gaussian distributions, and are independent, the PDF of the magnitude of the vector

appoximates the lognormal distribution often used to characterize the PDF of magnetic

�eld magnitudes [Burlaga and King, 1979; Slavin and Smith, 1983; Burlaga and Ness,

1998]. Here, we focus our attention mainly on the PDF's of the components of the

magnetic �eld uctuations, and of the separate PDF's of the underlying mean �eld

and variances of the components. In addition to comparison of the PDF's of the

components and their kurtoses to Gaussian distributions, we also compare them to

Castaing distributions, which are introduced in Sec. 2 and further explored in Sec. 4.

Following Hartlep et al. [2000], the PDF of the uctuation magnitude is derived from

the distributions of components as expected from the Castaing model, and is compared

to the observed distribution of the uctuation magnitude.

2. Methodology and Overview

Examination of the PDF's of magnetic �eld uctuations in the solar wind plasma

necessitates the removal of the mean �eld from spacecraft measurements. Estimation of

the mean �eld is an important issue that is complicated by the presence of uctuation

power at very low frequencies associated with solar source processes [e. g. Matthaeus and

Goldstein, 1986] and by the existence of adjacent time intervals with di�erent statistical
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properties. This is most evident during events such as magnetic clouds and current

sheet crossings, but is not restricted to these events alone. We use a stationarity test of

the mean, described briey in Sec. 3.1, which attempts to detect and eliminate intervals

with multiple statistical means. This is not a central feature of our analysis since its

absence does not change the conclusions to a signi�cant extent, but we employ the test

since it is an important conceptual component.

We analyze hourly averaged magnetic �eld data from the NSSDC Omnitape over a

span of 30 years, and 1 minute magnetic �eld averages from Ulysses over a period of 2

months. In order to extract the variation of the mean magnetic �eld, we break the data

into smaller intervals. This interval needs to be small so that variations in the mean

�eld can be tracked as accurately as possible, but it has to be long enough to measure

the mean �eld to good accuracy. (The statistical error in the determination of the mean

�eld is determined by the ratio of the interval length to the correlation time of the

uctuations and is presented in Sec. 3.1.) Empirically we have found that an interval

length of about four days works well, but the analysis is clearly not independent of this

choice, so we present an analysis of the Ulysses data using 4-day intervals and repeat

the analysis using 1-day intervals to illustrate di�erences in the resulting PDF's.

Computation of the mean �eld on an individual interval allows us to transform to

the mean �eld coordinate system in which the magnetic �eld may be expressed as

B = b1 e?1 + b2 e?2 + (B0 + b3) ek ; (2)

where B0 is the mean �eld, and b1, b2, and b3 are the orthogonal uctuations. The
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direction ek is evidently that of the mean �eld, while the choices of the other two

directions e?1 and e?2 are explained in Sec. 3. Note that B0 is de�ned uniquely on

each interval in the data analysis algorithm, but it varies both in time and in space. In

the simplest idealization we would like to associate B0 with a sharply de�ned ensemble

average mean �eld suggested by Eq. (2). However, variability of the local mean due

to solar source variations along with �nite sampling errors (see Sec. 3.1) will inuence

statistics based upon our empirically determined decomposition. The use of increments

[e. g. Marsch and Tu, 1994] improves the statistics [Panchev, 1971] in some cases, but

does not remove errors due to spatial variation of the mean �eld.

We have found that the uctuations of the three components are very nearly

uncorrelated in the mean �eld coordinate frame, which is a strong motivating factor

to perform the analysis in this reference frame. The evidence for the statistical

uncorrelatedness of the uctuations is provided by the cross-correlation matrix hbi bji,

and is presented in Sec. 3. Furthermore, the mean �eld provides a direction of basic

anisotropy [Matthaeus and Smith, 1981] that reects in situ dynamics, so it is the logical

coordinate system to use from that point of view as well.

The mean �eld itself is not constant in time, therefore we present the PDF's of

the mean magnetic �eld and of the variances of the components. These distributions

provide a measure of the variability and uncertainty in the parameters that characterize

the component distributions.

The importance of separating the short-time-scale uctuations from the long-time-

scale variation of the mean �eld is presented in Sec. 3.2, where it is shown by means of
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an example that the kurtosis of a component distribution can drop dramatically upon

removing the variations of the mean �eld.

In Sec. 3.3 we address the di�erences between PDF's of the fast and slow wind. It

has been known since the early exploration of the interplanetary medium that intervals

of solar wind observations in the ecliptic could be meaningfully separated into periods

with radial solar wind speeds U <
� 500 km/s and fast wind periods with U

>
� 500 km/s.

The Ulysses mission has con�rmed that the dichotomy of fast and slow wind is explained

principally as spatial organization of the wind sources. Fast wind generally originates at

higher latitudes from coronal hole regions while slow wind generally emerges from lower

latitude streamer belt regions. A strong source of temporal variation is the 11 year solar

cycle which alternately expands the inuence of slow and fast wind in the heliospheric

volume, so that at solar minimum a fairly steady fast wind with U > 600 km/s occupies

most of the volume except within perhaps �20Æ of the heliographic equator. The

contrast in gross properties of the slow and fast wind is fairly striking, the fast wind

being hotter and less dense [Hundhausen, 1972; Phillips et al., 1995]. There are also

observed di�erences in minor ion species composition, proton anisotropies, electron

beams, Coulomb collisionality, and other properties [Feldman and Marsch, 1997]. It is

not surprising that magnetic �eld and plasma uctuations also exhibit clear di�erences.

Indeed uctuations in the fast wind are relatively steadier and more Alfv�enic than their

slow wind counterparts [Goldstein et al., 1995; Tu and Marsch, 1995].

In view of these extensive di�erences, one might expect that the probability

distribution of uctuations in the fast and slow wind would di�er substantially, however
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this appears to be an incompletely settled issue at present. Comparisons between any

two works on the subject are not clear due to the diversity of procedures used by authors

in their analyses. Some authors have argued that the slow wind is more non-Gaussian

than the fast wind [Marsch and Tu, 1994], particularly so on time scales of several

hours, while others [Smith and Balogh, 1995; Sorriso-Valvo et al., 1999] have suggested

that fast and slow wind distributions are very similar. In Sec. 3.3 we attempt to provide

a clear characterization of the degree of non-Gaussianity of MHD scale uctuations in

the fast and slow wind using hourly averaged spacecraft data. We present evidence that

the fast and slow wind distributions are quite similar, and have almost the same degree

of non-Gaussian character, as measured by the kurtoses of the distributions.

In Sec. 4 we present a model that can reproduce the small departures from

Gaussianity seen in the distributions of uctuations. The observed uctuations,

particularly of the parallel component, show small, but persistent, departures from

Gaussian distributions. Furthermore, the PDF's of variances of the components are

approximately lognormal, suggesting that the superposition approach of Castaing et al.

[1990] may be appropriate to model the PDF's of the IMF uctuations. Stated simply,

the Castaing model is a superposition of Gaussian distributions with variances that are

distributed lognormally. Such a model is physically plausible since it is well known that

the IMF at low latitudes arises from many discrete coronal sources. If the conjecture

is then made that each of these discrete sources gives rise to Gaussianly distributed

magnetic �eld components, it follows from the multiplicity of the sources that one may

expect a spread of variances in the net magnetic �eld uctuations. The distribution
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of the variances may be considered a property of the sources and is a measure of the

relative numbers of sources that give rise to magnetic �eld uctuations with speci�c

values of the variance. E�ects of distributions of other physical properties over the

collection of discrete sources have been studied by some authors [e. g. Matthaeus and

Goldstein, 1986; Mullan, 1990].

The Castaing approach does seem to model the observed distributions well, and

yields kurtoses and higher order even moments which are similar to those observed.

Note that the Castaing model, being a superposition of Gaussians, has vanishing odd

moments and is only proposed as a model for the higher order even moments. Only if

a distribution of mean �elds were included as well, would a Castaing approach admit

non-zero odd moments. If a quasinormal analysis is desired, it would be necessary

to determine the third moments from the higher order even moments and then set

the higher order moments to their Gaussian values while allowing non-vanishing third

moments. Curiously, the Castaing model seems to yield best results for two of the

components, while one component is remarkably Gaussian.

When uctuations of the components are statistically independent, the PDF of

the magnitude of the uctuations can be computed from those of the components,

as discussed in Sec. 4.2. We derive the PDF of the uctuation magnitude from the

Castaing-superposed PDF's of the component uctuations. The resulting PDF is seen

to be in close agreement with the observations.

Castaing superposition has been used in the context of PDF's of the IMF by

Sorriso-Valvo et al. [1999], where the authors address the inverse problem of determining
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the width of the lognormal distribution of the variance from the PDF of increments of

the magnitude of the magnetic �eld. Our use of the Castaing model has three notable

di�erences. First, we are concerned with the PDF's of the uctuations, not those of the

time-lagged increments. Second, we apply the model to individual components, and not

to the magnitude. We derive the PDF of the magnitude from those of the components.

Third, we do not address the inverse problem, but use the best-�t lognormal to the

observed PDF's of variances of the components to calculate the Castaing-superposed

PDF's.

3. Observed Distributions of Magnetic Field Components

The magnetic �eld data that we analyze here is from the NSSDC Omnitape [King

and Papitashvili, 1994] and Ulysses spacecraft [Balogh et al., 1992]. The Omnitape

near-Earth data consists of 1 hour magnetic �eld averages over a 30 year span from

1965 through 1994, while the Ulysses data consists of 1 minute magnetic �eld averages

during the �rst two months of 1991. Note that the relatively short period of the Ulysses

data was necessitated by the rapid movement of the spacecraft away from the Sun and

towards Jupiter in the plane of the ecliptic during 1991. During the �rst two months of

1991 Ulysses moved from 1.59 AU to 2.24 AU from the Sun, a radial distance of 0.65

AU in the ecliptic [Smith and Marsden, 1995].

In the analyses of Omnitape and Ulysses data, we calculate mean �elds over time

intervals of 96 hour duration, and also repeat the analysis of Ulysses data on 24 hour

averaging intervals for the sake of comparison. We have carried out the analyses using
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various lengths of the averaging interval for both data sets, and found that 96 hour

averaging intervals work well since they are long enough to determine the mean �eld to

reasonable accuracy, and short enough that there is good likelihood that the averaging

interval is not composed of two or more patches with statistical properties di�erent from

one another. The 96 hour interval also has the advantage of being suÆciently longer

than typical correlation times in the solar wind plasma, yet much shorter than the solar

rotation period.

Spacecraft data often has �ll values representing missing (gaps) or corrupted (bad)

measurements, and we only accept those intervals that have less than 25% �ll values.

In the case of the Omnitape data this leads to the elimination of close to 60% of the

available data, while the loss of data is under 3% in the case of Ulysses. The high

fraction of elimination of the Omnitape composite data is due to unavailability of data

during many time spans.

After computing the mean �eld on each 96 hour interval, we transform to the mean

�eld coordinate system [Belcher and Davis, 1971]. In this reference frame uctuations

are speci�ed by the two perpendicular components and one parallel component that has

the mean �eld subtracted out. The \second" perpendicular direction is de�ned by

e?2 :=
ek � er

jek � erj
;

where ek is the direction along the mean �eld and er is the radial direction away from

the Sun. The \�rst" perpendicular direction e?1 := e?2 � ek is uniquely determined so

that the resulting coordinate system is right handed.
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The mean �eld coordinate system is well suited to the analysis since the components

are very nearly statistically uncorrelated in this frame. The cross-correlation matrix

hbi bji is symmetric, and the o�-diagonal elements can be compared to the diagonal

elements to measure the signi�cance of the cross-correlation. In particular the

normalized cross-correlation between components b1 and b2 can be measured by

< b1 b2 > =

q
< b

2
1 >< b

2
2 >. For the one analysis with Omnitape, and two with Ulysses

that are presented here, we have found the normalized cross-correlation between

components 1 and 2 (the two perpendicular components) to be 0.3%, 5.0%, and 2.4%

respectively. In the case of components 2 and 3 we obtain 3.0%, 2.4%, and 1.8%, while

for components 3 and 1 we get 2.0%, 9.0%, and 4.8%.

Note also that since a symmetric matrix can always be diagonalized, it is

guaranteed that there exists a reference frame in which the uctuations are statistically

uncorrelated. Test calculations that we performed in this frame (in which the

uctuations are uncorrelated by construction) indicate that the PDF's are very nearly

identical to the ones obtained in the mean �eld reference frame. For this reason, and

since the mean �eld frame is more intuitive, we have decided to carry out the analyses

in this reference frame.

A data selection criterion that we employ at this stage of the analysis is a

stationarity test of the mean [Matthaeus, Goldstein, and King, 1986] which can detect

and eliminate intervals that are composed of patches with two or more di�erent means.

Examples of such intervals are magnetic cloud and current sheet crossings, but the

stationarity test is additionally capable of detecting subtler changes of mean. The
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criterion used by the test is explained briey in the next section, and its use leads to

the elimination of approximately 60% of the data that passes the �ll-value test. It is

also important to note that all of the analysis presented here has been repeated without

using the stationarity test as a data selection criterion. The results with and without

the stationarity test of the mean are similar, and do not lead to fundamentally di�erent

conclusions. We employ this test because theories of statistical analyses [e. g. Panchev,

1971] are usually applicable to stationary situations, and we wish to ensure, as much as

possible, that the intervals we analyze are representative of a stationary ensemble.

The data from all available intervals is distributed into 50 bins of variable width

such that each bin has an equal number of data points, m. This ensures equal statistical

weight for each point of the PDF. The probability distribution function is de�ned by

f(bi) =
1

N

m

�bi
; (3)

where �bi is the bin-width of the ith bin, and bi is its center. The normalization factor

1=N ensures that the sum of probabilities adds up to one:
R
f(b) db = 1, where the

integration is over the range of observed values of b. The arithmetic mean of all the

measurements contained in a bin is de�ned to be the center of the bin bi.

The uncertainty in the computation of the center of the bin is given by �i=
p
m,

where �i is the standard deviation of the points in the ith bin [Bevington, 1969]. For

data from either spacecraft, the uncertainty is typically less than 0.5% for the component

PDF's, which is true for bins that are near the peak of the PDF's as well as those on

the tails. The uncertainty is too small to be shown in the plots of component PDF's.
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The �rst set of plots shown in Fig. 1 are obtained from the hourly averaged Fig. 1

Omnitape data. The analysis is carried out on intervals of 96 hour duration, and

intervals are checked for stationarity prior to being included in the analysis. The

solid curve is the best-�t Gaussian as computed from the least-squares method. The

goodness-of-�t is measured by �
2, which is de�ned as

�
2 :=

�i (f1(bi)� f2(bi))
2
�bi

�if
2
1 (bi)�bi

; (4)

where f1(bi) is the observed PDF and f2(bi) is a Gaussian distribution. The least-squares

method minimizes �2 to �nd the best-�t Gaussian. The values of the parameter �2 for

the best-�t Gaussian are listed for each component in Table 1. Table 1

Due care has been taken to ensure that each observed PDF and the adjoining

Gaussian curves are normalized so that the area enclosed under each curve or observed

PDF is equal to 1 in the domain of observation. This condition determines the amplitude

of each Gaussian curve as a function of the mean b0, variance �
2, and end points of the

domain. Thus the probability distribution function for an individual component b with

mean b0 is expressed as

f(b) = A exp

 
�
(b� b0)

2

2 �2

!
; (5)

with the amplitude given by

A
�1 = �

r
�

2

"
erf

 
(br � b0)p

2�

!
� erf

 
(b` � b0)p

2�

!#
; (6)

where b` and br are the leftmost and rightmost points respectively of the domain of

observation. In particular, the Gaussian least-squares �t to the data for each component
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is computed allowing the mean and variance to vary freely while the amplitude is

determined by Eq. (6).

The closeness of the PDF's of the perpendicular components of the magnetic �eld to

Gaussian distributions is evident from Fig. 1 and from the value of �2 and the kurtoses

listed in Table 1. Note that we de�ne the kurtosis for the distribution of a speci�ed

component by

� :=
h(b� b0)

4i
�
4

; (7)

where b0 is the mean and � is the standard deviation of the given component. For

practical purposes the ensemble mean in Eq. (7) is the arithmetic mean of the kurtoses

computed on each interval.

The kurtosis of the parallel component is approximately 4.2 which is higher than

the value 3.0 expected for a Gaussian distribution, according to the de�nition Eq. (7),

whereas the perpendicular components have kurtoses approximately 3.0 and 3.7 which

are closer to the Gaussian value. This indicates that the PDF of the parallel component

(and of the second perpendicular component) is more peaked than a Gaussian as

evidenced in Fig. 1; however the kurtosis we compute is much closer to that of a

Gaussian distribution than that obtained when the variation of the mean �eld is not

taken into account [e. g. � � 11, Feynman and Ruzmaikin, 1994]. Repeating the analysis

without a stationarity test of the mean yields the kurtoses 3.0, 3.7, and 3.8. The �rst

two values are unchanged, while the last is about 10% lower than the value obtained

with the stationarity test. The stationarity test of the mean therefore does not bias our
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data towards Gaussianity.

The mean �eld and variances computed on each interval are in turn not constant,

and the spread is illustrated in Table 2 and Fig. 2. The plot shows the PDF of the Table 2

Fig. 2mean �eld (mean value of parallel component). It is seen to have a single peak and

resembles a saw-tooth distribution, however the uncertainty in the determination of the

mean �eld is approximately 0.4 nT, as determined by Eq. (9), and is large enough to

allow distributions other than saw-tooth to �t the data. The PDF's of the variances of

the three components are shown in Fig. 6. These distributions approximate lognormal Fig. 6

functions, and have a wide range of variability. This feature suggests the applicability

of the Castaing formulation to model the PDF's of the magnetic �eld components, and

is explored in Sec. 4.

The plots shown in Fig. 3 are obtained from Ulysses 1 minute averaged data Fig. 3

analyzed using 96 h intervals. The perpendicular component PDF's are very nearly

Gaussian (� � 2:9 in either case), while the parallel component has a somewhat higher

value of the kurtosis (� � 4:1) and a poorer Gaussian �t. Once again it is found that the

stationarity test of the mean does not bias our data towards Gaussianity; the kurtoses

values are 2.9, 3.0, and 3.4 when the analysis is repeated without the data selection

procedure using the stationarity test.

In the case of the Omnitape, the data spans 30 years, whereas the Ulysses data

spans 2 months. This leads to poorer determination of the PDF's of the mean �eld and

of variances. Under these circumstances, a non-representative uctuation can cause

noticable departures from Gaussianity such as those evident in the lower two panels of
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Fig. 3.

Finally, the plots presented in Fig. 4 are obtained from analysis of the same Ulysses Fig. 4

data as above, but the length of the interval of analysis is 24 h instead of the 96 h

intervals used previously. The determination of the mean �eld is poorer than in the

previous case due to the shorter length of the interval (see Eq. (9)), leading to greater

errors in the PDF's of the uctuations and of the mean �eld and variances. The kurtoses

of the perpendicular components are approximately 3.2 and 2.3, while the parallel

component once again shows higher kurtosis, approximately 6.0. (The values of the

kurtoses without the use of a stationarity test of the mean are 2.8, 2.4, 4.7.) The plots

illustrate the sensitivity to the length of the interval of analysis. Note that the kurtosis

of the parallel component is almost 50% higher than that computed from the same

data using 96 h intervals. This trend of larger departures from Gaussian distributions

for shorter lengths of the interval of analysis parallels earlier results [Marsch and Tu,

1994; Bruno et al., 1999] that show that the PDF's of increments are progressively more

non-Gaussian at smaller values of the lag, but the precise relationship between the two

analyses is not clear.

3.1. Statistical Error Analysis

Determination of the mean �eld and other statistical parameters of the magnetic

�eld uctuations are subject to statistical errors. The �nite-time estimation of the mean

�eld,

[B]T :=
1

T

Z T

0
B(�) d� ; (8)
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leads to the error, as given by classical ergodic theory [e. g. Panchev, 1971]

�2[B]T = 2 �2 Tc

T

+O
 
T

2
c

T
2

!
; (9)

where

�2[B]T := h([B]T �B0)
2i ;

B0 is the ensemble-averaged mean �eld, and h� � �i denotes ensemble average. The

correlation time Tc is de�ned by

Tc :=

Z 1

0

R(�)

R(0)
d� ; (10)

where R(�) is the autocorrelation function, hÆB(t+ �) ÆB(t)i, and ÆB(t) := B(t)� B0.

There are two sources of error in the estimation of the variances. The �rst is due

to systematic underestimation of the variance due to loss of low frequency power that

results from �nite-time-estimation. This is given by

h[�2]T i = �
2 ��2[B]T : (11)

The second source of error is statistical and an estimate is found in a manner analogous

to the estimate for error in the mean value obtained in Eq. (9). The result is expressed

as

�2[�2]T = 2 (�� 1) �4 T�

T

+O
 
T

2
�

T
2

!
; (12)

where

�2[�2]T := h([�2]T � �
2)2i � (�2[B]T )

2

and

T� :=

Z 1

0

R
2(�)

R
2(0)

d� : (13)
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In obtaining Eq. (12) an assumption of structural similarity of correlation functions is

made [Townsend, 1976] which allows us to extend the relation

hÆB4i = � hÆB2i2 ;

(where � is the kurtosis) to non-zero lags:

hÆB2(t) ÆB2(t+ �)i = hÆB2(t)i hÆB2(t+ �)i+ (�� 1) hÆB(t) ÆB(t+ �)i2 :

Another assumption made in obtaining Eqs. (9) and (12) is that the autocorrelation

function R(�) is of Lanczos-type, i. e. R(�) � 0 for large values of � .

There is a third source of error due to the uncertainty in the direction of the mean

�eld, but it is relatively small. Additionally, it does not cause an error in the sum of

variances �i �
2
i and a�ects only the individual variances. We therefore neglect this error

here.

The expected error in the determination of the mean �eld as expressed by Eq. (9)

provides a criterion to judge the stationarity of the statistical mean on an interval

[Matthaeus and Goldstein, 1982]. A given interval is decomposed into a collection of all

possible subintervals each of length T , and the quantity �2[B]T is computed for this

\ensemble". We have chosen to reject all intervals for which �2[B]T deviates from the

expected value 2 �2
Tc=T by more than 67%.

In the case of the Omnitape data analysis using 96 h intervals, the mean �eld

strength is observed to be 3.6 nT. The uncertainty, as computed from Eq. (9) is 0.8 nT,

whereas the standard deviation of the mean �eld distribution is 1.4 nT (see Table 2).

Similarly, the mean values of the variances of each component and their standard
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deviations as well as expected uncertainty from Eq. (12) are listed in Table 2. (Table 2

does not show the corresponding values for the Ulysses data since determination of the

PDF's of the mean �eld and variances is much poorer than for the Omnitape data.) In

each case it is noticed that the standard deviations of the distributions are much higher

than the expected uncertainties from the ergodic theory calculations. This suggests that

there is a genuine spread in the distributions of the mean �eld and variances in addition

to the �nite sampling uncertainty [Bury, 1999]. It seems reasonable that this additional

variability represents factors, such as large scale gradients and nonsteady solar sources,

that are not controlled locally.

3.2. E�ect of Variations of the Mean Field

Separating the short-time-scale uctuations of the magnetic �eld from the

longer-time-scale variations of the mean �eld, presumably a property of the solar source,

is an important feature of our analysis. Variability of the mean can arti�cially enhance

estimates of non-Gaussianity. We illustrate this with an example.

Following Feynman and Ruzmaikin [1994] we analyze hourly averaged Omnitape

data from 1973. Treating the entire data set as one interval, without separating the

uctuations from the mean �eld, we �nd that the kurtosis of the PDF of the second

perpendicular component is 10.3. This is similar to the kurtosis (approximately 11)

reported by Feynman and Ruzmaikin [1994] for the Bz component, which is one of the

nonradial components in the GSE coordinates. On the other hand, when the same data

set is analyzed using 96 hr subintervals to separate the mean �eld from the uctuations,
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the kurtosis for the PDF of the uctuations of the second perpendicular component

drops dramatically to 3.6. This is still higher than the value (3.0) expected for a

Gaussian distribution, but clearly demonstrates that the departure from Gaussianity is

much larger when the variation of the mean �eld is not separated out.

3.3. Di�erences among distributions in the fast and slow wind

Our analysis can be further re�ned by di�erentiating between intervals with fast

and slow wind. From an analysis of 2 days of slow wind data and 4 days of fast wind

data, Marsch and Tu [1994] conclude that PDF's of �eld increments in the slow wind

are more non-Gaussian than those in the fast wind at all scales. Here we examine the

di�erences between fast and slow wind in regard to distributions of the uctuations

about the mean. We study the same 30 year Omnitape data set as described above,

and separate the 96 hr intervals with slow speed (below 475 km/s) from those with high

speed (above 525 km/s). If an interval has less than 75% acceptable data points, it is

rejected by the algorithm. The PDF's of magnetic �eld components in the fast and slow

solar winds are compared in three distinct cases. In the �rst case, the PDF's of the

magnetic �eld components are computed on all available fast and slow wind intervals

over a period of 30 years. In the second case, the PDF's of the fast and slow wind

intervals are computed over a period of 4 years near the solar cycle minimum of 1976,

while in the third case, the period of 4 years is near the solar cycle maximum of 1981.

The kurtoses of the PDF's are listed in Table 3 and variances in Table 4 for each Table 3

Table 4of the three cases. The PDF's of the second perpendicular component are illustrated in
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Fig. 5. Note that the distributions in the fast and slow solar wind do not display striking Fig. 5

di�erences. A trend that one does observe in the PDF's is that they are generally

narrower in the fast wind than in the slow wind | the standard deviations di�er by less

than 10%. The departures from Gaussianity of PDF's in both the fast and slow wind

are small and the di�erence in kurtoses is less than 3.5%. Measures of non-Gaussianity

of the magnetic �eld in the fast and slow winds is thus likely to be the same. This

similarity between fast and slow wind uctuations contrasts the well known features

which di�er greatly between the two [Axford and McKenzie, 1997].

4. Castaing superposition model

We now turn our attention to a theoretical model that is capable of reproducing

the small departures from Gaussianity seen in the higher order even moments of the

distributions. The model involves a simple superposition of Gaussian distributions with

variances that are distributed lognormally. It was originally proposed by Castaing et

al. [1990] in the context of hydrodynamic turbulence and has also been applied by

Sorriso-Valvo et al. [1999] in relation to distributions of increments of the magnitude of

the interplanetary magnetic �eld. In contrast, we adapt the Castaing superposition to

model the PDF's of the uctuations of the components and from them derive the PDF

of the magnitude of the uctuations. (Note that uctuations and increments are not

identical; the relationship between PDF's of the two quantities is not straightforward.)

Our approach is also distinguished by the use of observed distributions of the variances

whereas Sorriso-Valvo et al. [1999] determine the width of the lognormal distribution of



29

the variance of the magnitude from a �tting technique.

4.1. Components of uctuations

Adapting the formulation of Castaing et al. [1990], the PDF of the uctuations of

the ith component is a weighted superposition of Gaussian distributions:

fi(bi) :=

Z
w(vi) g(bi; vi) dvi ; (14)

where g(bi; vi) is a Gaussian distribution of bi with variance vi,

g(bi; vi) :=
1

p
2 � vi

exp

 
�b2i
2 vi

!
: (15)

The weighting function w(vi) is a lognormal distribution of the variance,

w(vi) =
1

p
2 �� vi

exp

 
�
(ln vi

vi0
)2

2�2

!
; (16)

where � and vi0 are parameters that determine the width and mean of the distribution.

The function w(vi) represents the distribution of variances due to multiple sources

contained in the dataset. The integration in Eq. (14) is carried out over the range of

variances that is observed in the data set.

The parameters � and vi0 are determined empirically by a best-�t lognormal curve

to the observed distribution of the variances. Lognormal best-�ts to the observed

distributions of variances are shown in Fig. 6 and the Castaing-superposed PDF's are

compared with the observations in Fig. 7. The �2 values, kurtoses, and sixth moments Fig. 7

of the Castaing-superposed distributions compare well to the observed distributions, and

are listed in Table 5. The normalized sixth moment m6 of the distributions is de�ned Table 5
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analogously to the kurtosis:

m6 :=
h(bi � bi0)

6i
�
6

: (17)

The sixth moment contains additional information about the tails of the distributions.

For a Gaussian distribution, m6 = 15, and a higher value indicates that the tail of

the distribution is more prominent. Even though the distribution functions are only

subtly di�erent to the eye, the Castaing superposition does a much better job than a

Gaussian model does in accounting for the sixth moments of the observed distributions,

as demonstrated in Table 5. Note that while the Castaing model yields better �ts to

components 2 and 3, it seems that component 1, which is one of the perpendicular

components, is better described by a single Gaussian. The reason for this di�erence

between the two perpendicular components is not clearly known at this time.

4.2. Magnitude of uctuations

The PDF of the magnitude of the uctuations is computed from the PDF's of the

components (assumed independent) by integration of the product of the component

distributions on the surface of a sphere [Hartlep et al., 2000]:

f(b) =

Z
f1(b1) f2(b2) f3(b3) d� d� ; (18)

where b1 = b sin � cos�, b2 = b sin � sin�, and b3 = b cos �. When the Castaing

superposition is used to determine the PDF's of the components, the PDF of the

magnitude is given by

f(b) =

Z
g1(b1; v1) g2(b2; v2) g3(b3; v3) �
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w1(v1)w2(v2)w3(v3) dv1 dv2 dv3 d� d� : (19)

This model is compared to the observations in Fig. 8. For comparision, we also show Fig. 8

the case in which f(b) is computed assuming that the components have Gaussian

distributions | given by the best-�t Gaussians to the component PDF's. Observe that

the Castaing model yields f(b) that agrees more closely with the observations.

The best-�t lognormal curve to the observed PDF of the magnitude of uctuations

is also shown in Fig. 8, and seen to be in excellent agreement although we are not aware

of any theoretical justi�cation for this similarity. Note that Burlaga [1991] studied the

PDF of the magnitude of the total magnetic �eld, and not of the uctuations. The

total �eld magnitude distribution includes the distribution of the mean �eld, which is

presumably a solar source e�ect. This di�erence between the two lognormal �ts must

be kept in mind.

5. Conclusions

We examine magnetic �eld data from the NSSDC Omnitape and Ulysses spacecraft

to compute the PDF's of the components of the uctuations and �nd that the

distributions are much closer to being Gaussian when the variation of the mean �eld is

taken into account. This is particularly true of the perpendicular components of the

uctuations. We arrive at this conclusion by inspecting the kurtoses of the PDF's and

the �2 goodness-of-�t parameters. These parameters also provide quantitative measures

of the small departures from Gaussianity.
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The highest value of the kurtosis that we observe for uctuations of the

interplanetary magnetic �eld is 6.0 for the parallel uctuations as seen from the Ulysses

data. This value of the kurtosis reduces to 4.1 when the same data is analyzed using

a longer (96 h) interval of analysis that is less prone to errors in computing the mean

�eld. Another example of the sensitivity of the PDF's to the details of the analysis is

presented in Sec. 3.2, where it is seen that the kurtoses of the PDF's with and without

the removal of the varying mean �eld are sharply di�erent. This may explain why

Feynman and Ruzmaikin [1994] report large departures from Gaussianity in contrast to

the conclusion of Whang [1977].

In a study of the di�erences of the PDF's in fast and slow solar wind in the

ecliptic plane, we �nd that the distributions of both fast and slow wind uctuations

are systematically non-Gaussian, with the kurtoses of the vector components lying

in the range of 2.8{4.8. No signi�cant di�erence in kurtoses is seen between the fast

and slow samples in the entire dataset or in either solar maximum or solar minimum

subsets. This is a surprising and interesting conclusion in view of the many observed

di�erences between high and low speed wind. Our conclusion supports the view of

Smith and Balogh [1995] { that the distribution functions of magnetic uctuations in

the fast and slow wind in the ecliptic plane are nearly identical { and reinforces this

view quantitatively. In contrast, Marsch and Tu [1994] concluded that uctuations in

the slow wind are more non-Gaussian than uctuations in the fast wind, particularly on

time scales of several hours. Our conclusion also supports the �ndings of Sorriso-Valvo

et al. [1999], who study a certain power law exponent associated with the PDF of the
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magnitude of the magnetic �eld, and conclude that the di�erences between fast and

slow solar wind are not signi�cant.

Our analysis indicates that the departures from Gaussianity are generally such

that the kurtosis robustly assumes values � � 3 to 4. A small but systematic

departure from Gaussian statistics may signify a universal property of interplanetary

MHD turbulence. From standard treatments of hydrodynamic turbulence such as the

von Karman-Howarth equations [Monin and Yaglom, 1975, e. g.] we observe that a

dynamical hierarchy exists in which the second order moments depend upon third

order moments and so on. Spectral transfer and turbulent dissipation depend upon

the existence of third order moments [Proudman and Reid, 1954] and can also be

seen in the MHD Karman-Howarth equations [Smith, 1981]. For strictly Gaussian

statistics of the velocity and magnetic �elds, spectral transfer cannot occur because

the third order moments vanish. Turbulence depends upon a small non-Gaussianity

of the uctuations. For the solar wind, which is presumably driven strongly near the

sun and near stream interfaces, it would be reasonable to suppose that nonlinearity

allows a relaxation towards Gaussianity in turbulent decay, while driving maintains a

degree of non-Gaussianity. This picture would be consistent with a reproducible level of

non-Gaussianity such as that which is consistent with the present observations.

Further detailed examination of the dynamical origins of non-Gaussianity of

magnetic uctuations would take us into the realm of multifractal scaling of higher

order moments [Burlaga, 1991b], which is beyond the scope of the present paper.

Although untested using our particular data analysis procedure, our present conclusions
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may apply to the interplanetary velocity �eld uctuations as well since a high degree of

cross-correlation is often seen in the velocity and magnetic �elds [Belcher and Davis,

1971].

Distinctive features of our data analysis include the use of the mean �eld coordinate

system in which the component uctuations are seen to be almost uncorrelated, use of

a subinterval of analysis that allows us to distinguish between the mean �eld variation

and uctuations, and the use of a stationarity test of the mean as a data selection

criterion. The PDF's of the mean �eld and of the variances of the three components

are also presented to illustrate the spreads in these parameters that may arise due to

variations in the solar sources. These distributions are wider than what is expected

solely from �nite sampling. Therefore we conclude that statistical distributions of the

mean �eld and the variances are signi�cant features of magnetic uctuations in the

solar wind. Furthermore, the PDF's of variances of the magnetic �eld uctuations are

approximately lognormal, suggesting the applicability of the superposition principle of

Castaing et al. [1990] to model the PDF's of the components.

In essence, the Castaing model is a superposition of Gaussian distributions with

variances that are distributed lognormally. Such a model is physically plausible since it

is well known that the IMF at low latitudes arises from many discrete coronal sources.

If it is postulated that each of these discrete sources gives rise to Gaussianly distributed

magnetic �eld components, it follows from the multiplicity of the sources that one may

expect a spread of variances in the net magnetic �eld uctuations that arise from the

sum of all sources. The distribution of the variances may be considered a property of the
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sources and is a measure of the relative numbers of sources that give rise to magnetic

�eld uctuations with speci�c values of the variance.

The PDF's and their kurtoses that arise from the Castaing model agree well

with the observations. Additionally, the model leads to better agreement with the

observed PDF of the magnitude of the uctuations than a model that derives the

PDF of the magnitude assuming that the components have Gaussian distributions.

It may be noted that for reasons that are not presently understood, the �rst of the

two perpendicular components has an almost purely Gaussian distribution, while the

Castaing superposition is a good model for the other two components.
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Figure 1. PDF's of uctuations of the magnetic �eld as computed from Omnitape

data analyzed using 96 h intervals. The top two plots show the perpendicular com-

ponents, while the bottom one shows the parallel component. The dots represent

centers of the binned data and the solid line shows the best-�t Gaussian. Each of

the 50 bins contains 3167 measurements. The uncertainty in the abscissas of the

bins is uniformly less than 0.5% of the bin widths.

Figure 2. The plot shows the PDF of the mean magnetic �eld B0 computed from

Omnitape data analyzed using 96 h intervals. Each of the 11 bins contains 164

data points. The uncertainty in the abscissas of the bins is uniformly less than

2.5% of the bin widths.

Figure 3. PDF's of uctuations of the magnetic �eld as computed from Ulysses

data analyzed using 96 h intervals. The top two plots show the perpendicular com-

ponents, while the bottom one shows the parallel component. The dots represent

centers of the binned data and the solid line shows the best-�t Gaussian. Each of

the 50 bins contains 5034 measurements. The uncertainty in the abscissas of the

bins is uniformly less than 0.5% of the bin widths.

Figure 4. PDF's of uctuations of the magnetic �eld as computed from Ulysses

data analyzed using 24 h intervals. The top two plots show the perpendicular com-

ponents, while the bottom one shows the parallel component. The dots represent

centers of the binned data and the solid line shows the best-�t Gaussian. Each of

the 50 bins contains 2876 measurements. The uncertainty in the abscissas of the

bins is uniformly less than 0.5% of the bin widths.



43

Figure 5. PDF's of the second perpendicular component in fast (dots) and slow

(pluses) solar wind. The corresponding best-�t Gaussians are also shown alongside.

From top to bottom, plots represent observations from the entire ensemble, during

a 4 year period near the solar cycle minimum of 1976, and during a 4 year period

near the solar cycle maximum of 1981 respectively.

Figure 6. Observed PDF's (dots) of the variances of the components of the

magnetic �eld and the best-�t lognormal curves (solid lines). The top two plots are

for the perpendicular components and the bottom one is for the parallel component.

The widths of the lognormal curves are � = 0.52, 0.72, and 0.89 respectively.

Figure 7. Observed PDF's (dots) of the uctuations of the components of the

magnetic �eld, the Castaing-superposed PDF's (solid lines), and the best-�t Gaus-

sian curves (dashed lines). The top two plots are for the perpendicular components

and the bottom one is for the parallel component.

Figure 8. Observed PDF's (dots) of the magnitude of magnetic �eld uctuations,

the PDF computed from the Castaing-superposed PDF's of the components (solid

line), the PDF computed from the best-�t Gaussian PDF's of the components

(dashed line), and the best-�t lognormal curve (dash-dotted line).
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Figure 1. PDF's of uctuations of the

magnetic �eld as computed from Omnitape

data analyzed using 96 h intervals. The �rst

two plots show the perpendicular components,

while the last one shows the parallel compo-

nent. The dots represent centers of the binned

data and the solid line shows the best-�t Gaus-

sian. Each of the 50 bins contains 3167 mea-

surements. The uncertainty in the abscissas of

the bins is uniformly less than 0.5% of the bin

widths.

Figure 2. The two plots show the PDF's of the

mean magnetic �eld B0 and of the sum of vari-

ances, denoted �
2, of the three components, as

computed from Omnitape data analyzed using

96 h intervals. Each of the 11 bins contains 164

data points. The uncertainty in the abscissas

of the bins is uniformly less than 2.5% of the

bin widths.
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Figure 3. PDF's of uctuations of the mag-

netic �eld as computed from Ulysses data ana-

lyzed using 96 h intervals. The �rst two plots

show the perpendicular components, while the

last one shows the parallel component. The

dots represent centers of the binned data and

the solid line shows the best-�t Gaussian. Each

of the 50 bins contains 5034 measurements.

The uncertainty in the abscissas of the bins is

uniformly less than 0.5% of the bin widths.

Figure 4. PDF's of uctuations of the mag-

netic �eld as computed from Ulysses data ana-

lyzed using 24 h intervals. The �rst two plots

show the perpendicular components, while the

last one shows the parallel component. The

dots represent centers of the binned data and

the solid line shows the best-�t Gaussian. Each

of the 50 bins contains 2876 measurements.

The uncertainty in the abscissas of the bins is

uniformly less than 0.5% of the bin widths.
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Figure 5. PDF's of the second perpendicu-

lar component in fast (dots) and slow (pluses)

solar wind. The corresponding best-�t Gaus-

sians are also shown alongside. From top to

bottom, plots represent observations from the

entire ensemble, during a 4 year period near

the solar cycle minimum of 1976, and during a

4 year period near the solar cycle maximum of

1981 respectively.

Figure 6. Observed PDF's (dots) of the vari-

ances of the components of the magnetic �eld

and the best-�t lognormal curves (solid lines).

The top two plots are for the perpendicular

components and the bottom one is for the par-

allel component. The widths of the lognormal

curves are � = 0.52, 0.72, and 0.89 respectively.
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Figure 7. Observed PDF's (dots) of the uc-

tuations of the components of the magnetic

�eld, the Castaing-superposed PDF's (solid

lines), and the best-�t Gaussian curves (dashed

lines). The top two plots are for the perpendic-

ular components and the bottom one is for the

parallel component.

Figure 8. Observed PDF's (dots) of the

magnitude of magnetic �eld uctuations, the

PDF computed from the Castaing-superposed

PDF's of the components (solid line), the PDF

computed from the best-�t Gaussian PDF's of

the components (dashed line), and the best-�t

lognormal curve (dash-dotted line).
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Table 1. Kurtoses and �
2 values

Perp. 1 Perp. 2 Parallel

Omnitape 96h: Best-�t �2 0:0003 0:0075 0:0168

Kurtosis 2:99� 0:04 3:67� 0:05 4:17� 0:08

Ulysses 96h: Best-�t �2 0:0017 0:0058 0:0345

Kurtosis 2:95� 0:11 2:89� 0:16 4:10� 0:27

Ulysses 24h: Best-�t �2 0:0050 0:0068 0:0727

Kurtosis 3:18� 0:08 2:32� 0:05 5:98� 0:38



49

Table 2. Variability of the mean magnetic �eld and of the variances listed here is for

Omnitape data using 96 h intervals for analysis. The rightmost column shows the uncer-

tainties expected from the ergodic theory formulae speci�ed in Sec. 3.1. The units are nT

for the mean �eld, and (nT)2 for the variances.

Mean Value Standard Deviation Calculated Uncertainty

Mean Magnetic Field 3.6 1.4 0.8

Perp. Variance (First) 8.1 7.9 2.0

Perp. Variance (Second) 9.3 10.6 2.5

Parallel Variance 9.4 11.1 3.2
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Table 3. Kurtoses in Fast and Slow Wind

Data set Speed �?1 �?2 �k

Full Omnitape Slow 2:9� 0:1 3:4� 0:1 4:2� 0:2

Fast 2:9� 0:1 3:5� 0:2 4:5� 0:2

Solar Min. 1976 Slow 2:8� 0:1 3:4� 0:1 4:1� 0:3

Fast 3:0� 0:1 3:2� 0:1 4:8� 0:3

Solar Max. 1981 Slow 3:0� 0:1 3:4� 0:1 4:3� 0:1

Fast 3:3� 0:6 3:7� 0:5 3:9� 0:5
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Table 4. Variances in Fast and Slow Wind

Data set Speed �
2
?1 �

2
?2 �

2
k

Full Omnitape Slow 7.5 9.4 9.3

Fast 5.1 5.7 4.6

Solar Min. 1976 Slow 5.9 6.4 7.5

Fast 4.5 4.0 3.6

Solar Max. 1981 Slow 8.1 11.4 10.4

Fast 8.2 8.8 7.2
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Table 5. Comparision of the goodness-of-�t measure �2 and

statistical properties, kurtoses and the normalized sixth mo-

ment m6, of the Gaussian and Castaing models with the obser-

vations.

Perp. 1 Perp. 2 Parallel

Gaussian best-�t �2 0:0005 0:0075 0:0230

Castaing best-�t �2 0:0080 0:0029 0:0116

Observed Kurtosis 3:0 3:7 4:2

Kurtosis for Gaussian Model 3:0 3:0 3:0

Kurtosis for Castaing Model 3:4 4:1 4:4

Observed m6 16:4 27:4 41:0

m6 for Gaussian Model 15:0 15:0 15:0

m6 for Castaing Model 18:8 29:9 35:4
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