Common Derivatives used for motion in 1, 2 and 3 dimensions

x(t)	Graph	$\frac{dx}{dt}$
x = b function is constant in time	b slope = 0	$\frac{dx}{dt} = 0$
$x = c \cdot t$ function is linear in time	slope = c 1 2 3 4 t	$\frac{dx}{dt} = c$
$x = d \cdot t^2$ function is quadratic in time	d slope = 2d 1 2 3 4 t	$\frac{dx}{dt} = 2 \cdot d \cdot t$
$x = e \cdot t^{3}$ function is cubic in time or a general power: $x = f \cdot t^{n}$		$\frac{dx}{dt} = 3 \cdot e \cdot t^2$ derivative of power n: $\frac{dx}{dt} = n \cdot f \cdot t^{n-1}$